50 research outputs found

    Circular Dichroism is Sensitive to Monovalent Cation Binding in Monensin Complexes

    Get PDF
    We present a lock-free version of the light-weight userlevel task management library called Wool, in an aim to show that even extremely well tuned, in terms of synchronization,applications can benefit from lock-free programming.Explicit multi-threading is an efficient way to exploit the offered parallelism of multi-core and multi-processor based systems. However, it can sometimes be hard to expressthe inherited parallelism in programs using a limited number of long lived threads. Often it can be more straightforwardto dynamically create a large number of small tasks that in turn automatically execute on the available threads.Wool is a promising and efficient library and framework that allows the programmer to create user tasks in C with a very low overhead. The library automatically executestasks and balances the load evenly on a given number of threads by utilizing work stealing techniques. However, thesynchronization for stealing tasks is based on mutual exclusion which is known to limit parallelism and efficiency. We have designed and implemented a new lock-free algorithmfor synchronization of stealing tasks in Wool. Experiments show similar or significantly improved performance on a setof benchmarks executed on a multi-core platform

    Dependence of the Reactivity of Acridine on Its Substituents: A Computational and Kinetic Study

    Get PDF
    Aromatic nucleophilic substitution on the C9 carbon of acridine plays an important role in multiple biological and medicinal applications. The rate of the key reaction is strongly dependent on the environment and acridine substituents. In this study, the factors influencing the reaction mechanism were studied theoretically and verified experimentally for simplified systems. Density functional theory was used for the computations. The activation energy of a model derivative was determined experimentally from a kinetic study. Also, the relative reactivities of selected compounds were verified by a competition experiment. The theoretical predictions correlate well with the observations. The computed re

    Glucagon-like peptide 1 aggregates into low-molecular-weight oligomers off-pathway to fibrillation

    Get PDF
    The physical stability of peptide-based drugs is of great interest to the pharmaceutical industry. Glucagon-like peptide 1 (GLP-1) is a 31-amino acid peptide hormone, the analogs of which are frequently used in the treatment of type 2 diabetes. We investigated the physical stability of GLP-1 and its C-terminal amide derivative, GLP-1-Am, both of which aggregate into amyloid fibrils. While off-pathway oligomers have been proposed to explain the unusual aggregation kinetics observed previously for GLP-1 under specific conditions, these oligomers have not been studied in any detail. Such states are important as they may represent potential sources of cytotoxicity and immunogenicity. Here, we identified and isolated stable, low-molecular-weight oligomers of GLP-1 and GLP-1-Am, using size-exclusion chromatography. Under the conditions studied, isolated oligomers were shown to be resistant to fibrillation or dissociation. These oligomers contain between two and five polypeptide chains and they have a highly disordered structure as indicated by a variety of spectroscopic techniques. They are highly stable with respect to time, temperature, or agitation despite their noncovalent character, which was established using liquid chromatography-mass spectrometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results provide evidence of stable, low-molecular-weight oligomers that are formed by an off-pathway mechanism which competes with amyloid fibril formation

    Enantiomeric Discrimination by Surface- Enhanced Raman Scattering- Chiral Anisotropy of Chiral Nanostructured Gold Films

    Full text link
    A surface- enhanced Raman scattering- chiral anisotropy (SERS- ChA) effect is reported that combines chiral discrimination and surface Raman scattering enhancement on chiral nanostructured Au films (CNAFs) equipped in the normal Raman scattering Spectrometer. The CNAFs provided remarkably higher enhancement factors of Raman scattering (EFs) for particular enantiomers, and the SERS intensity was proportional to the enantiomeric excesses (ee) values. Except for molecules with mesomeric species, all of the tested enantiomers exhibited high SERS- ChA asymmetry factors (g), ranging between 1.34 and 1.99 regardless of polarities, sizes, chromophores, concentrations and ee. The effect might be attributed to selective resonance coupling between the induced electric and magnetic dipoles associated with enantiomers and chiral plasmonic modes of CNAFs.Absolution by SERS: A surface- enhanced Raman scattering chiral anisotropy effect is presented that combines chiral discrimination and surface Raman scattering enhancement on chiral nanostructured Au films. It is applied in the normal Raman scattering system to identify the absolute configuration and composition of enantiomers, overcoming disadvantages of polarimeter systems and chromatography.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156417/3/anie202006486-sup-0001-misc_information.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156417/2/anie202006486_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156417/1/anie202006486.pd

    Enantiomeric Discrimination by Surface- Enhanced Raman Scattering- Chiral Anisotropy of Chiral Nanostructured Gold Films

    Full text link
    A surface- enhanced Raman scattering- chiral anisotropy (SERS- ChA) effect is reported that combines chiral discrimination and surface Raman scattering enhancement on chiral nanostructured Au films (CNAFs) equipped in the normal Raman scattering Spectrometer. The CNAFs provided remarkably higher enhancement factors of Raman scattering (EFs) for particular enantiomers, and the SERS intensity was proportional to the enantiomeric excesses (ee) values. Except for molecules with mesomeric species, all of the tested enantiomers exhibited high SERS- ChA asymmetry factors (g), ranging between 1.34 and 1.99 regardless of polarities, sizes, chromophores, concentrations and ee. The effect might be attributed to selective resonance coupling between the induced electric and magnetic dipoles associated with enantiomers and chiral plasmonic modes of CNAFs.Absolution by SERS: A surface- enhanced Raman scattering chiral anisotropy effect is presented that combines chiral discrimination and surface Raman scattering enhancement on chiral nanostructured Au films. It is applied in the normal Raman scattering system to identify the absolute configuration and composition of enantiomers, overcoming disadvantages of polarimeter systems and chromatography.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156470/3/ange202006486_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156470/2/ange202006486.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156470/1/ange202006486-sup-0001-misc_information.pd

    Raman spectroscopic detection of the T-HgII-T base pair and the ionic characteristics of mercury

    Get PDF
    Developing applications for metal-mediated base pairs (metallo-base-pair) has recently become a high-priority area in nucleic acid research, and physicochemical analyses are important for designing and fine-tuning molecular devices using metallo-base-pairs. In this study, we characterized the HgII-mediated T-T (T-HgII-T) base pair by Raman spectroscopy, which revealed the unique physical and chemical properties of HgII. A characteristic Raman marker band at 1586 cm−1 was observed and assigned to the C4=O4 stretching mode. We confirmed the assignment by the isotopic shift (18O-labeling at O4) and density functional theory (DFT) calculations. The unusually low wavenumber of the C4=O4 stretching suggested that the bond order of the C4=O4 bond reduced from its canonical value. This reduction of the bond order can be explained if the enolate-like structure (N3=C4-O4−) is involved as a resonance contributor in the thymine ring of the T-HgII-T pair. This resonance includes the N-HgII-bonded state (HgII-N3-C4=O4) and the N-HgII-dissociated state (HgII+ N3=C4-O4−), and the latter contributor reduced the bond order of N-HgII. Consequently, the HgII nucleus in the T-HgII-T pair exhibited a cationic character. Natural bond orbital (NBO) analysis supports the interpretations of the Raman experiments
    corecore