62 research outputs found

    Degradation rate of 5-fluorouracil in metastatic colorectal cancer. A new predictive outcome biomarker?

    Get PDF
    BACKGROUND: 5-FU based chemotherapy is the most common first line regimen used for metastatic colorectal cancer (mCRC). Identification of predictive markers of response to chemotherapy is a challenging approach for drug selection. The present study analyzes the predictive role of 5-FU degradation rate (5-FUDR) and genetic polymorphisms (MTHFR, TSER, DPYD) on survival. MATERIALS AND METHODS: Genetic polymorphisms of MTHFR, TSER and DPYD, and the 5-FUDR of homogenous patients with mCRC were retrospectively studied. Genetic markers and the 5-FUDR were correlated with clinical outcome. RESULTS: 133 patients affected by mCRC, treated with fluoropyrimidine-based chemotherapy from 2009 to 2014, were evaluated. Patients were classified into three metabolic classes, according to normal distribution of 5-FUDR in more than 1000 patients, as previously published: poor-metabolizer (PM) with 5-FU-DR ≤ 0,85 ng/ml/106 cells/min (8 pts); normal metabolizer with 0,85 < 5-FU-DR < 2,2 ng/ml/106 cells/min (119 pts); ultra-rapid metabolizer (UM) with 5-FU-DR ≥ 2,2 ng/ml/106 cells/min (6 pts). PM and UM groups showed a longer PFS respect to normal metabolizer group (14.5 and 11 months respectively vs 8 months; p = 0.029). A higher G3-4 toxicity rate was observed in PM and UM, respect to normal metabolizer (50% in both PM and UM vs 18%; p = 0.019). No significant associations between genes polymorphisms and outcomes or toxicities were observed. CONCLUSION: 5-FUDR seems to be significantly involved in predicting survival of patients who underwent 5-FU based CHT for mCRC. Although our findings require confirmation in large prospective studies, they reinforce the concept that individual genetic variation may allow personalized selection of chemotherapy to optimize clinical outcomes

    The Melanocortin System behind the Dysfunctional Eating Behaviors

    Get PDF
    The dysfunction of melanocortin signaling has been associated with obesity, given the important role in the regulation of energy homeostasis, food intake, satiety and body weight. In the hypothalamus, the melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) contribute to the stability of these processes, but MC3R and MC4R are also localized in the mesolimbic dopamine system, the region that responds to the reinforcing properties of highly palatable food (HPF) and where these two receptors seem to affect food reward and motivation. Loss of function of the MC4R, resulting from genetic mutations, leads to overeating in humans, but to date, a clear understanding of the underlying mechanisms and behaviors that promote overconsumption of caloric foods remains unknown. Moreover, the MC4R demonstrated to be a crucial modulator of the stress response, factor that is known to be strictly related to binge eating behavior. In this review, we will explore the preclinical and clinical studies, and the controversies regarding the involvement of melanocortin system in altered eating patterns, especially binge eating behavior, food reward and motivation

    Assessing the role of ghrelin and the enzyme ghrelin O-acyltransferase (GOAT) system in food reward, food motivation, and binge eating behavior.

    Get PDF
    Abstract The peripheral peptide hormone ghrelin is a powerful stimulator of food intake, which leads to body weight gain and adiposity in both rodents and humans. The hormone, thus, increases the vulnerability to obesity and binge eating behavior. Several studies have revealed that ghrelin's functions are due to its interaction with the growth hormone secretagogue receptor type 1a (GHSR1a) in the hypothalamic area; besides, ghrelin also promotes the reinforcing properties of hedonic food, acting at extra-hypothalamic sites and interacting with dopaminergic, cannabinoid, opioid, and orexin signaling. The hormone is primarily present in two forms in the plasma and the enzyme ghrelin O-acyltransferase (GOAT) allows the acylation reaction which causes the transformation of des-acyl-ghrelin (DAG) to the active form acyl-ghrelin (AG). DAG has been demonstrated to show antagonist properties; it is metabolically active, and counteracts the effects of AG on glucose metabolism and lipolysis, and reduces food consumption, body weight, and hedonic feeding response. Both peptides seem to influence the hypothalamic–pituitary–adrenal (HPA) axis and the corticosterone/cortisol level that drive the urge to eat under stressful conditions. These findings suggest that DAG and inhibition of GOAT may be targets for obesity and bingeing-related eating disorders and that AG/DAG ratio may be an important potential biomarker to assess the risk of developing maladaptive eating behaviors

    Role of evaluating tumor‑infiltrating lymphocytes, programmed death‑1 ligand 1 and mismatch repair proteins expression in malignant mesothelioma

    Get PDF
    The tumor immune microenvironment (TME) and immune checkpoints have been reported to serve a role in the pathogenesis of malignant mesothelioma (MM) and treatment outcome. Additionally, mismatch Repair (MMR) deficiency appears to enhance the response to checkpoints blockade in several tumors. The aim of the present study was to analyze programmed death‑1 ligand 1 (PD‑L1) expression in MM and to characterize the TME. This could help to understand the immune response, and evaluate its prognostic and predictive values. We also investigated MMR protein expression. We retrospectively analyzed 55 mesotheliomas to determine PD‑L1, CD4+, CD8+, mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), mutS homolog 6 (MSH6) and PMS1 homolog 2, mismatch repair system component (PMS2) expression. We used an immunoscore (1+, 2+ and 3+) to evaluate tumor‑infiltrating lymphocytes (TILs). TILs were observed in all but two samples (53/55); the majority had an immunoscore 1+ (30/53), while 2+/3+ was reported for 23/53 samples. A predominance of CD8+ was highlighted in 8 cases (15%). PD‑L1 expression of ≥1% on tumor cells was displayed in 40 cases; in 9 of these, ≥50% expression was reported. Of note, alterations in MMR staining was not observed. In addition, survival analysis revealed that epithelioid subtype was associated with better prognosis. We observed a trend towards poorer prognosis for ≥50% PD‑L1 expression on tumor cells, lower immunoscore (1+) and CD8+ TIL predominance. The present study highlighted the importance of exploring the TME and the standardization of PD‑L1 assessment guidelines to apply in the field of immunotherapy

    Investigating the role of the central melanocortin system in stress and stress-related disorders

    Get PDF
    The melanocortinergic neural circuit, known for its influence on energy expenditure and feeding behavior, also plays a role in stress and stress-induced psychiatric disorders, including anxiety and depression. The major contribution is given by the melanocortin-4 receptor (MC4R) subtype, highly expressed in brain regions involved in the control of stress responses. Furthermore, the MC4R appears to profoundly affect the activity of the hypothalamic-pituitary-adrenal (HPA) axis, and it has been also highlighted a functional and anatomical interaction with the corticotropin-releasing factor (CRF), an important mediator of stress and stress-related behaviors. The MC4R agonists seem to exacerbate stress-inducing anxiety- and depressive-like behavior, while MC4R antagonists have been demonstrated to mitigate such disorders, as shown in several preclinical behavioral tests. The evidence collected in the present review suggests that the melanocortin system, through the MC4R, could possibly modulate behavioral responses to stress, suggesting the use of MC4R antagonists as a possible novel treatment for anxiety and depression induced by stress

    Fasting glucose and body mass index as predictors of activity in breast cancer patients treated with everolimus-exemestane: the EverExt study

    Get PDF
    Evidence on everolimus in breast cancer has placed hyperglycemia among the most common high grade adverse events. Anthropometrics and biomarkers of glucose metabolism were investigated in a observational study of 102 postmenopausal, HR + HER2- metastatic breast cancer patients treated with everolimus-exemestane in first and subsequent lines. Best overall response (BR) and clinical benefit rate (CBR) were assessed across subgroups defined upon fasting glucose (FG) and body mass index (BMI). Survival was estimated by Kaplan-Meier method and log-rank test. Survival predictors were tested in Cox models. Median follow up was 12.4 months (1.0-41.0). The overall cohort showed increasing levels of FG and decreasing BMI (p &lt; 0.001). Lower FG fasting glucose at BR was more commonly associated with C/PR or SD compared with PD (p &lt; 0.001). We also observed a somewhat higher BMI associated with better response (p = 0.052). More patients in the lowest FG category achieved clinical benefit compared to the highest (p &lt; 0.001), while no relevant differences emerged for BMI. Fasting glucose at re-assessment was also predictive of PFS (p = 0.037), as confirmed in models including BMI and line of therapy (p = 0.049). Treatment discontinuation was significantly associated with changes in FG (p = 0.014). Further research is warranted to corroborate these findings and clarify the underlying mechanisms

    Anxiety associated with palatable food withdrawal is reversed by the selective FAAH inhibitor PF-3845: A regional analysis of the contribution of endocannabinoid signaling machinery

    Get PDF
    Objective: Consumption of energy-dense palatable "comfort" food can alleviate stress and negative emotions, while abrupt withdrawal from a palatable diet can worsen these symptoms, causing difficulties with adherence to weight-loss diets. Currently, no pharmacological treatment is effective for obesity-related anxiety, so we investigated the endocannabinoid system (ECS), and specifically the fatty acid amide hydrolase (FAAH), as an interesting emerging target in this context because of its key role in the regulation of both energy homeostasis and emotional behavior. Methods: Rats were subjected to exposure and subsequent abstinence from a palatable cafeteria diet. During abstinence period, rats were treated with the selective FAAH inhibitor PF-3845 (10 mg/kg; intraperitoneal administration every other day). Results: Abstinent rats displayed an anxiogenic-like behavior and changes in the proteins of ECS signaling machinery in brain areas involved both in anxiety and food intake regulation. In particular, withdrawal caused a reduction of the expression of cannabinoid receptors in the nucleus accumbens and of enzymes diacylglycerol lipase alpha and monoacylglycerol lipase (MAGL) in the amygdala. Pharmacological inhibition of FAAH exerted an anxiolytic-like effect in abstinent animals and increased both MAGL expression in amygdala and CB2 expression in prefrontal cortex. Discussion: Overall, our results suggest that emotional disturbances associated with dieting are coupled with region-specific alterations in the cerebral expression of the ECS and that the enhancement of the endocannabinoid signaling by FAAH inhibition might represent a novel pharmacological strategy for the treatment of anxiety related to abstinence from palatable food.Funding for open access charge: Universidad de Málaga / CBUA European Regional DevelopmentFunds-European Union, Grant/Award Number:PI19/01577; Instituto de Salud Carlos III,Grant/Award Number: RETICS; Ministerio deCiencia e Innovaci on, Grant/Award Number:ERDF-EU RD16/0017/0001; Ministerodell'Università e della Ricerca, Grant/AwardNumber: 2012JTX3KL; PNRR-RomeTechnopole-FP

    Anxiety associated with palatable food withdrawal is reversed by the selective FAAH inhibitor PF-3845: A regional analysis of the contribution of endocannabinoid signaling machinery

    Get PDF
    ObjectiveConsumption of energy-dense palatable "comfort" food can alleviate stress and negative emotions, while abrupt withdrawal from a palatable diet can worsen these symptoms, causing difficulties with adherence to weight-loss diets. Currently, no pharmacological treatment is effective for obesity-related anxiety, so we investigated the endocannabinoid system (ECS), and specifically the fatty acid amide hydrolase (FAAH), as an interesting emerging target in this context because of its key role in the regulation of both energy homeostasis and emotional behavior. MethodsRats were subjected to exposure and subsequent abstinence from a palatable cafeteria diet. During abstinence period, rats were treated with the selective FAAH inhibitor PF-3845 (10 mg/kg; intraperitoneal administration every other day). ResultsAbstinent rats displayed an anxiogenic-like behavior and changes in the proteins of ECS signaling machinery in brain areas involved both in anxiety and food intake regulation. In particular, withdrawal caused a reduction of the expression of cannabinoid receptors in the nucleus accumbens and of enzymes diacylglycerol lipase alpha and monoacylglycerol lipase (MAGL) in the amygdala. Pharmacological inhibition of FAAH exerted an anxiolytic-like effect in abstinent animals and increased both MAGL expression in amygdala and CB2 expression in prefrontal cortex. DiscussionOverall, our results suggest that emotional disturbances associated with dieting are coupled with region-specific alterations in the cerebral expression of the ECS and that the enhancement of the endocannabinoid signaling by FAAH inhibition might represent a novel pharmacological strategy for the treatment of anxiety related to abstinence from palatable food. Public SignificanceThe present study focused on evaluating the role of the endocannabinoid system in modulating withdrawal from naturally rewarding activities that have an impact on mood, such as feeding. The variations observed in the emotional behavior of abstinent rats was linked to neuroadaptations of the ECS in specific brain areas

    Lime production in the Late Chalcolithic period: the case of Arslantepe (Eastern Anatolia)

    Get PDF
    Plaster and mortar samples from Arslantepe (Turkey) hold potential to provide unique information about the lime production and adhibition during the Late Chalcolithic period (4th millennium BCE). A multi-analytical approach including polarized light microscopy (PLM), X-ray powder diffraction (XRPD), and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS) has been applied to characterize mortar samples from temple C and elite residences dated back to the late Chalcolithic 3–4 (3800–3400 BCE). A marly limestone has been identified as starting raw material for the lime production, probably coming from two different sources (local and brought from a different part of the Malatya plain). Moreover, different aggregate selection and the use of different production techniques were also detected in the samples, which are probably related to the function of the buildings. Evidence of a re-plastering process was also detected in the two elite houses, which probably refers to a routine maintenance process

    Tissue immune profile: a tool to predict response to neoadjuvant therapy in triple negative breast cancer

    Get PDF
    Abstract: Pathological complete response (pCR) after neoadjuvant chemotherapy (NACT) can predict better survival outcomes in patients with early triple negative breast cancer (TNBC). Tumor infiltrating lymphocytes (TILs), Programmed Death-Ligand 1 (PD-L1), and Cluster of Differentiation 73 (CD73) are immune-related biomarkers that can be evaluated in the tumor microenvironment. We investigated if the contemporary expression of these biomarkers combined in a tissue immune profile (TIP) can predict pCR better than single biomarkers in TNBC. Tumor infiltrating lymphocytes (TILs), CD73 expression by cancer cells (CC), and PD-L1 expression by immune cells (IC) were evaluated on pre-NACT biopsies. We defined TIP positive (TIP+) as the simultaneous presence of TILS ≥ 50%, PD-L1 ≥ 1%, and CD73 ≤ 40%. To consider the effects of all significant variables on the pCR, multivariate analysis was performed. Akaike information criterion (AIC) and Bayesian information criterion (BIC) were used for model selection. We retrospectively analyzed 60 biopsies from patients with TNBC who received standard NACT. Pathological complete response was achieved in 23 patients (38.0%). Twelve (20.0%) cases resulted to be TIP+. The pCR rate was significantly different between TIP+ (91.7%) and TIP− (25.0%) (p &lt; 0.0001). Using a multivariate analysis, TIP was confirmed as an independent predictive factor of pCR (OR 49.7 (6.30–392.4), p &lt; 0.0001). Finally, we compared the efficacy of TIP versus each single biomarker in predicting pCR by AIC and BIC. The combined immune profile is more accurate in predicting pCR (AIC 68.3; BIC 74.5) as compared to single biomarkers. The association between TIP+ and pCR can be proposed as a novel link between immune background and response to chemotherapy in TNBC, highlighting the need to consider an immunological patients’ profile rather than single biomarkers
    corecore