12 research outputs found

    Role of Patterning Factors in the Shade Avoidance Response

    No full text

    Recurrent requirement for the m6A-ECT2/ECT3/ECT4 axis in the control of cell proliferation during plant organogenesis

    Get PDF
    mRNA methylation at the N6-position of adenosine (m6A) enables multiple layers of post-transcriptional gene control, often via RNA-binding proteins that use a YT521-B homology (YTH) domain for specific m6A recognition. In Arabidopsis, normal leaf morphogenesis and rate of leaf formation require m6A and the YTH-domain proteins ECT2, ECT3 and ECT4. In this study, we show that ect2/ect3 and ect2/ect3/ect4 mutants also exhibit slow root and stem growth, slow flower formation, defective directionality of root growth, and aberrant flower and fruit morphology. In all cases, the m6A-binding site of ECT proteins is required for in vivo function. We also demonstrate that both m6A methyltransferase mutants and ect2/ect3/ect4 exhibit aberrant floral phyllotaxis. Consistent with the delayed organogenesis phenotypes, we observe particularly high expression of ECT2, ECT3 and ECT4 in rapidly dividing cells of organ primordia. Accordingly, ect2/ect3/ect4 mutants exhibit decreased rates of cell division in leaf and vascular primordia. Thus, the m6A-ECT2/ECT3/ECT4 axis is employed as a recurrent module to stimulate plant organogenesis, at least in part by enabling rapid cellular proliferation

    Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism

    No full text
    Carotenoids are isoprenoid compounds that are essential for plants to protect the photosynthetic apparatus against excess light. They also function as health-promoting natural pigments that provide colors to ripe fruit, promoting seed dispersal by animals. Work in Arabidopsis thaliana unveiled that transcription factors of the phytochrome-interacting factor (PIF) family regulate carotenoid gene expression in response to environmental signals (i.e. light and temperature), including those created when sunlight reflects from or passes though nearby vegetation or canopy (referred to as shade). Here we show that PIFs use a virtually identical mechanism to modulate carotenoid biosynthesis during fruit ripening in tomato (Solanum lycopersicum). However, instead of integrating environmental information, PIF-mediated signaling pathways appear to fulfill a completely new function in the fruit. As tomatoes ripen, they turn from green to red due to chlorophyll breakdown and carotenoid accumulation. When sunlight passes through the flesh of green fruit, a self-shading effect within the tissue maintains high levels of PIFs that directly repress the master gene of the fruit carotenoid pathway, preventing undue production of carotenoids. This effect is attenuated as chlorophyll degrades, causing degradation of PIF proteins and boosting carotenoid biosynthesis as ripening progresses. Thus, shade signaling components may have been co-opted in tomato fruit to provide information on the actual stage of ripening (based on the pigment profile of the fruit at each moment) and thus finely coordinate fruit color change. We show how this mechanism may be manipulated to obtain carotenoid-enriched fruits.Work at the Centre for Research in Agricultural Genomics was funded by the following grants: CarotenActors (FP7-PEOPLE-2011-IIF 300862), TiMet (FP7-KBBE-2009-3 245143), Ibercarot (CYTED-112RT0445), Spanish Ministerio de Economia y Competitividad (BIO2011-23680) and Generalitat de Catalunya (2014SGR-1434) to MRC.Peer reviewe

    Light affects tissue patterning of the hypocotyl in the shade-avoidance response

    No full text
    Plants have evolved strategies to avoid shade and optimize the capture of sunlight. While some species are tolerant to shade, plants such as Arabidopsis thaliana are shade-intolerant and induce elongation of their hypocotyl to outcompete neighboring plants. We report the identification of a developmental module acting downstream of shade perception controlling vascular patterning. We show that Arabidopsis plants react to shade by increasing the number and types of water-conducting tracheary elements in the vascular cylinder to maintain vascular density constant. Mutations in genes affecting vascular patterning impair the production of additional xylem and also show defects in the shade-induced hypocotyl elongation response. Comparative analysis of the shade-induced transcriptomes revealed differences between wild type and vascular patterning mutants and it appears that the latter mutants fail to induce sets of genes encoding biosynthetic and cell wall modifying enzymes. Our results thus set the stage for a deeper understanding of how growth and patterning are coordinated in a dynamic environment

    Multi-level analysis of the interactions between <i>REVOLUTA</i> and <i>MORE AXILLARY BRANCHES 2</i> in controlling plant development reveals parallel, independent and antagonistic functions

    No full text
    Class III homeodomain leucine zipper (HD-ZIPIII) transcription factors play fundamental roles in controlling plant development. The known HD-ZIPIII target genes encode proteins involved in the production and dissipation of the auxin signal, HD-ZIPII transcription factors and components that feedback to regulate HD-ZIPIII expression or protein activity. Here, we have investigated the regulatory hierarchies of the control of MORE AXILLARY BRANCHES2 (MAX2) by the HD-ZIPIII protein REVOLUTA (REV). We found that REV can interact with the promoter of MAX2. In agreement, rev10D gain-of-function mutants had increased levels of MAX2 expression, while rev loss-of-function mutants showed lower levels of MAX2 in some tissues. Like REV, MAX2 plays known roles in the control of plant architecture, photobiology and senescence, which prompted us to initiate a multi-level analysis of growth phenotypes of hd-zipIII, max2 and respective higher order mutants thereof. Our data suggest a complex relationship of synergistic and antagonistic activities between REV and MAX2; these interactions appear to depend on the developmental context and do not all involve the direct regulation of MAX2 by REV
    corecore