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The shady side of leaf developm
ent: the role of the
REVOLUTA/KANADI1 module in leaf patterning and
auxin-mediated growth promotion
Paz Merelo1, Esther Botterweg Paredes2, Marcus G Heisler1

and Stephan Wenkel2
Leaves are present in all land plants and are specialized organs

for light harvesting. They arise at the flanks of the shoot apical

meristem (SAM), and develop into lamina structures that exhibit

adaxial/abaxial (upper/lower side of the leaf) polarity. At the

molecular level, an intricate regulatory network determines ad-/

abaxial polarity in Arabidopsis thaliana leaves, where the Class

III Homeodomain Leucine Zipper (HD-ZIPIII) and KANADI (KAN)

proteins are key mediators. The HD-ZIPIII REVOLUTA (REV) is

expressed in the adaxial domain of lateral organs, whereas

KAN1 is involved in abaxial differentiation. The REV/KAN1

module directly and antagonistically regulates the expression

of several genes involved in shade-induced growth and auxin

biosynthetic enzymes.
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Introduction
Leaves are the primary photosynthetic organs of vascular

plants, enabling them to convert CO2 into sugars for

energy storage. The shape of leaves is usually flattened,

presumably reflecting a common selective pressure for

maximizing light capture while minimizing weight. How-

ever, leaves are not only flat but also consist of distinct

layers of cell types that form their upper (adaxial) and

lower (abaxial) tissues with the boundary between these

tissues located in the middle. While at maturity these

tissues are specialized for photosynthesis and gas
www.sciencedirect.com
exchange, respectively, during leaf development these

cell types also play a critical role in establishing the final

flat shape of the leaf. In Arabidopsis, when genes that

promote adaxial or abaxial tissue identity are ectopically

expressed or reduced in function, the resulting disrup-

tions to tissue identity correlate with dramatic changes in

leaf morphology. For instance, ectopic expression of the

Class III family of HD-ZIP transcription factors REVO-

LUTA, PHABULOSA and PHAVOLUTA results in

organs consisting of predominantly adaxial cell types

and the resulting leaves are radially symmetric (centric)

rather than flattened [1,2]. Similarly, leaf primordia that

are abaxialized due to ectopic expression of the KANADI
(KAN) genes also develop in a centric manner [2,3,5].

These observations demonstrate both adaxial and abaxial

tissues need to be present for leaves to develop a lamina

shape. Consistent with this, genes involved in maintain-

ing lamina growth and integrity, such as the WUSCHEL
RELATED HOMEOBOX (WOX) genes, are expressed at

the ad-/abaxial boundary [6].

Apart from shaping their leaves appropriately, plants also

maximize their light capture by modifying leaf position

and overall stature to avoid shading by neighbouring

plants, which is collectively called the shade avoidance

response. As it turns out, many of the same genes in-

volved in shaping leaves in seed plants are also involved

in mediating shade avoidance responses [7,8�,9,10�].
However, this finding is perhaps not so surprising given

that both processes involve the regulation of biosynthesis,

transport and signalling of auxin. In this review, we will

detail recent findings on similarities between the core

regulatory networks underlying both leaf ad-/abaxial po-

larity and shade response, and highlight recent data

relating these networks to auxin.

The HD-ZIPIII/KAN module regulates adaxial/
abaxial cell identity and shade-induced
growth
Leaves initiate as primordia on the flanks of the shoot apical

meristem. The leaf primordium is composed of adaxial and

abaxial tissues that give rise to future upper and lower

tissues of the leaf. Here, primordium tissue situated closer

to the shoot apical meristem (SAM) is referred to as the

adaxial domain while primordium tissue on the opposite

side, facing away from the SAM is called the abaxial

domain. Members of the HD-ZIPIIIs are expressed in
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112 Growth and development
the adaxial domain where they act as master regulators of

adaxial cell identity [1,2]. In the abaxial domain, members

of the KAN family of transcription factors literally mirror

HD-ZIPIII expression and act as regulators of abaxial cell

identity [2,3]. Besides their complementary patterns of

expression, the study of loss- and gain-of-function muta-

tions in HD-ZIPIII and KAN genes has revealed an antago-

nistic relationship between them [2,11,12].

REV and KAN1 directly regulate a number of genes or

genetic pathways in an opposite manner [7,13��,14�],
Figure 1
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suggesting that the REV/KAN1 antagonism relies partly

on the opposite regulation of common biochemical path-

ways (Figure 1). In part this also reflects the finding that

REV acts mainly as a transcriptional activator while

KAN1 tends to act as a transcriptional repressor

[7,8�,13��,14�]. In addition to genes involved in organ

development and adaxial/abaxial patterning, several joint

target genes encode regulators of shade response such as

HD-ZIPII transcription factors as well as TRYPTO-

PHAN AMINOTRANSFERASE OF ARABIDOPSIS
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the production of auxin [15,16]. This implies a connection

of the regulatory network involved in leaf patterning and

the network operating in the shade response pathway

(Figure 1).

Regulation of auxin biology
Both the synthesis and transport of auxin influence plant

organ polarity [11,17]. Auxin is in part produced in a two-

step process: TAA alliinase enzymes [18,19] convert the

amino acid tryptophan to IPA (indole-3-pyruvate) from

which YUCCA-type (YUC) flavin monoxygenase

enzymes produce IAA (indole-3-acetic acid), the most

abundant auxin in plants [20]. Both REV and KAN1

regulate TAA1 and YUC5, which constitute the linear

tryptophan-dependent auxin production pathway [7,8�]
and in agreement with previous findings, ectopic expres-

sion of REV causes up-regulation of TAA1 and YUC5 and

an increase in auxin production whereas ectopic expres-

sion of KAN1 represses both TAA1 and YUC5, which

results in low auxin levels. Both higher order taa/tar
mutant plants [18] as well as higher order yuc mutants

display defects in leaf blade expansion and the latter have

also been associated with leaf margin development and

blade outgrowth [21]. Besides the regulation of auxin

biosynthesis, the REV/KAN1 module seems to impinge

on a number of genes encoding auxin signalling compo-

nents [13��,14�], including several AUXIN RESPONSE
FACTOR (ARF), SMALL AUXIN UP-REGULATED
(SAUR), GH3 and Aux/IAA genes, and auxin transport

components such as PIN-FORMED (PIN), PINOID
(PID), PID homolog (WAG1/2) and NAKED PINS IN
YUC MUTANTS (NPY) genes [22,23,24,25,26]. While

not all these genes are common targets, REV and

KAN1 often regulate different genes within a common

pathway. For instance, although only KAN1 has been

shown to regulate PIN1 and PID, both transcription

factors regulate members of the WAG and NPY gene

families. Thus, auxin transport is a common target. Over-

all these findings suggest that the REV/KAN1 module

affects not only the production of auxin but also its

transport and downstream signalling (Figure 1). However,

of these genes, so far only ARF3 and TAA1 have been

shown to be differentially expressed along the adaxial-

abaxial axis during leaf development [7,27,28]. In fact, it

is not clear at this point how the opposite regulation of

auxin by REV and KAN1 relates to organ initiation since

low levels of auxin are required in adaxial tissues to

promote adaxial cell fate [29].

To avoid growing in the canopy of other vegetation,

plants can sense the red/far-red ratio with their phyto-

chrome systems and induce elongation growth. A high

red/far-red (R:FR) ratio, is e.g. found in an open field

environment. Here, elongation growth is suppressed

through the direct binding and inhibition of PHYTO-

CHROME INTERACTING FACTOR (PIF) transcrip-

tional regulators by active phytochrome B (PHYB). This
www.sciencedirect.com
contrasts shade conditions, where the R:FR ratio is low

due to far-red reflection from neighbouring vegetation. In

this situation, PHYB is in its inactive state and unleashes

the PIF factors to promote elongation growth [30]. The

shade-induced wave of transcription is followed by a

boost in auxin biosynthesis [31] that is required for

elongation growth. Plants carrying either loss-of-function

mutations in the TAA1 gene or higher order yucca mutants

(yuc1 yuc4 and yuc1 yuc2 yuc6) remain short in shade

conditions, do not produce high levels of auxin and are

thus more shade insensitive [19,20]. The production of

auxin initiates following the breakdown of cytokinine in

young leaf primordia, which prevents the continued

growth of developing leaves. It is assumed, that this

inhibition of growth releases resources that can be redir-

ected to the growing hypocotyl [32].

The analysis of hd-zipIII and kanadi loss- and gain-of-

function mutants has revealed the involvement of the

HD-ZIPIII/KAN module in shade-induced growth pro-

motion [7,33]. Loss of HD-ZIPIII function (as in rev
mutants or in plants with ectopic MIR165a expression)

results in reduced elongation growth in response to shade

while REV gain-of-function (rev10D) mutants have slight-

ly elongated hypocotyls under non-shade conditions. Ec-

topic expression of KAN1, causes a complete suppression

of shade-induced growth and kan1 kan2 double mutants

have, like rev10D, elongated hypocotyls in white light

conditions [8�]. However, in comparison to rev10D, which

shows normal hypocotyl elongation in shade, kan1 kan2
double mutants show a significantly reduced response [8�].
These findings support a model that relies on the opposing

activities of HD-ZIPIIIs and KANs for allowing elonga-

tion growth in response to shade (Figure 1).

Within the hypocotyl, both REV and TAA1 are expressed

in the inner cylinder of the vascular system [7,28]. The

PIN3 auxin efflux carrier, which is absolutely required for

a full shade avoidance response, is expressed in the

endodermis and the epidermis, and changes its localiza-

tion pattern in response to shading from basal to a more

lateral position [34]. It is currently unclear how auxin

production, transport and signalling are regulated across

the different hypocotyl cell types but a recent study

suggests an important role for the epidermis in directing

hypocotyl growth [35�].

Regulation of HD-ZIPIIs
The analysis of direct downstream target genes of REV

identified several genes encoding HD-ZIPII transcription

factors that are directly activated by REV [7]. These HD-
ZIPII genes including HOMEOBOX ARABIDOPSIS

THALIANA 2 (HAT2), HAT3, ARABIDOPSIS THALI-

ANA HOMEOBOX 2 (ATHB2) and ATHB4, are all

known to promote growth in response to shade and are

part of the first wave of transcriptional up-regulation

[36,37,38]. In the absence of these transcription factors,
Current Opinion in Plant Biology 2017, 35:111–116
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e.g. in the hat3 athb4 double mutant, hypocotyl elongation

is impaired [39]. Moreover, higher order hd-zipII mutants,

such as hat3 athb4 and hat3 athb2 athb4 exhibit additional

embryo and leaf polarity defects strongly resembling

higher order hd-zipIII mutants [9,10�]. Indeed, the cis-
element recognized by HD-ZIPII and HD-ZIPIII tran-

scription factors share the same core sequence [AAT(G/

C)ATT] [40] suggesting that HD-ZIPII/IIIs may redun-

dantly regulate the same targets. However, in contrast to

the HD-ZIPIIIs, all the HD-ZIPII proteins contain an

Ethylene-responsive element binding factor-associated

Amphiphilic Repression (EAR) domain, which suggests

they interact with TOPLESS/TOPLESS-LIKE co-re-

pressor proteins [41,42] and to likely act as transcriptional

repressors [10�,38,43]. This further implies that HD-

ZIPIIs may function either as repressors of genes activat-

ed by REV, or as repressors of factors that restrict HD-

ZIPIIIs [44�]. In either case, HD-ZIPIIIs would be af-

fected, resulting in higher HD-ZIPIII activity in situa-

tions of high HD-ZIPII expression or in reduced HD-

ZIPIII activity as seen in hat3 athb4 and hat3 athb2 athb4
mutant plants [9]. Interestingly, in a recent study, it was

revealed that the HD-ZIPIII transcription factor REV,

whose expression is restricted to the adaxial side of the

leaf by the activity of the microRNAs miR165/166, phys-

ically interact with their targets the HD-ZIPII proteins

HAT3 and ATHB4 to directly repress MIR165/166 ex-

pression in the adaxial domain [45��]. In particular, such

direct repression is established via a previously character-

ized cis-element located close to the MIR165/166 genes

[45��,46]. These results unveil at least one of the molec-

ular functions of both HD-ZIPII and HD-ZIPIII proteins

in the establishment of leaf polarity and suggest the

possibility that they may also act together to similarly

regulate shade response-related genes, which would be an

interesting challenge to address in the future.

Besides the HD-ZIPII/HD-ZIPIII interaction, the HD-

ZIPII members HAT1 and HAT2, which are involved in

shade-avoidance response [7,39], have been shown to be

down-regulated by ectopic KAN1 under shade conditions

[7,8�,13��]. These findings also support the shared REV/

KAN1 common targets hypothesis and connect the de-

velopmental and shade-avoidance regulatory networks

(Figure 1).

Feedback regulation between shade
perception and leaf development
Shade has a profound impact on plant development,

especially for the leaves. When grown in shade, Arabi-

dopsis leaves show characteristic features such as elon-

gated petioles and a smaller and thinner leaf blade. The

molecular processes underlying these changes are how-

ever not well understood. Nevertheless, different photo-

receptor mutants exhibit characteristic leaf growth

defects suggesting that light and the downstream signal-

ling cascade play an additional role in leaf patterning.
Current Opinion in Plant Biology 2017, 35:111–116
Phytochromes and phototropins are photoreceptors that

capture the red/far-red, and blue spectrum of light, re-

spectively. Members of both the phytochrome and photo-

tropin family have been shown to antagonistically control

leaf curling. Plants carrying loss-of-function mutations in

both PHOTOTROPIN 1 (PHOT1) and PHOT2 display

strongly downward curled leaves that resemble hd-zipIII
loss-of-function mutants [47��]. The addition of a further

mutation in the PHYB photoreceptor rescues the down-

ward curling phenotype and produces a flat lamina [47��].
These findings support a role for red/far-red light in

patterning Arabidopsis leaves.

How and at which developmental stage shade affects leaf

development is still largely unknown but studies on leaf

development in tomato have provided some first insights.

In response to shading, the area of tomato leaves exhibits

great plasticity, being shade-responsive also late in de-

velopment [48��]. However other features such as stoma-

tal index, which is the ratio of the number of stomata per

epidermal pavement cells, can only be affected in the

early stages of leaf development. In response to continu-

ous shade treatments, an increase in both the size of the

SAM and incipient leaf primordia was observed. Further

gene expression profiling studies revealed profound

changes in the expression of KNOTTED1-like homeobox

(KNOX) and KNOX-related genes in young leaf primor-

dia that impinge on known patterning pathways [48��].

To summarize, there is increasing evidence that shade

growth and leaf patterning share common regulatory

modules in which auxin seems to play a decisive role.

However, a future challenge will be to dissect these

regulatory connections at cellular resolution and further

test them functionally.
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