8 research outputs found

    Notulae to the Italian flora of algae, bryophytes, fungi and lichens: 12

    Get PDF
    In this contribution, new data concerning bryophytes, fungi and lichens of the Italian flora are presented. It includes new records, confirmations or exclusions for the bryophyte genera Acaulon, Campylopus, Entosthodon, Homomallium, Pseudohygrohypnum, and Thuidium, the fungal genera Entoloma, Cortinarius, Mycenella, Oxyporus, and Psathyrella and the lichen genera Anaptychia, Athallia, Baeomyces, Bagliettoa, Calicium, Nephroma, Pectenia, Phaeophyscia, Polyblastia, Protoparmeliopsis, Pyrenula, Ramalina, and Sanguineodiscus

    Notulae to the Italian flora of algae, bryophytes, fungi and lichens: 13

    Get PDF
    In this contribution, new data concerning bryophytes, fungi and lichens of the Italian flora are presented. It includes new records and confirmations for the bryophyte genera Bryum, Cryphaea, Didymodon, and Grimmia; the fungal genera Bryostigma, Cercidospora, Conocybe, Cortinarius, Endococcus, Inocybe, Psathyrella, and Sphaerellothecium; the lichen genera Agonimia, Anisomeridium, Bilimbia, Diplotomma, Gyalecta, Huneckia, Lecidella, Lempholemma, Myriolecis, Nephroma, Pannaria, Pycnothelia, Pyrrhospora, Rinodina, Stereocaulon, Thalloidima, Trapelia, Usnea, Variospora, and Verrucaria

    Multitarget Compounds for Bipolar Disorder: From Rational Design to Preliminary Pharmacokinetic Evaluation

    No full text
    Due to the complex and multifactorial nature of bipolar disorder (BD), single-target drugs have traditionally provided limited relief with no disease-modifying effects. In line with the polypharmacology paradigm, we attempted to overcome these limitations by devising two series of multitarget-directed ligands endowed with both a partial agonist profile at dopamine receptor D3 (D3R) and inhibitory activity against glycogen synthase kinase 3 beta (GSK-3β). These are two structurally unrelated targets that play independent, yet connected, roles in cognition and mood regulation. Two compounds (7 and 10) emerged as promising D3R/GSK-3β multitarget-directed ligands with nanomolar activity at D3R and low-micromolar inhibition of GSK-3β, thereby confirming, albeit preliminarily, the feasibility of our strategy. Furthermore, 7 showed promising drug-like properties in stability and pharmacokinetic studies

    Multitarget Compounds for Bipolar Disorder: From Rational Design to Preliminary Pharmacokinetic Evaluation

    No full text
    Due to the complex and multifactorial nature of bipolar disorder (BD), single-target drugs have traditionally provided limited relief with no disease-modifying effects. In line with the polypharmacology paradigm, we attempted to overcome these limitations by devising two series of multitarget-directed ligands endowed with both a partial agonist profile at dopamine receptor D3 (D3R) and inhibitory activity against glycogen synthase kinase 3 beta (GSK-3β). These are two structurally unrelated targets that play independent, yet connected, roles in cognition and mood regulation. Two compounds (7 and 10) emerged as promising D3R/GSK-3β multitarget-directed ligands with nanomolar activity at D3R and low-micromolar inhibition of GSK-3β, thereby confirming, albeit preliminarily, the feasibility of our strategy. Furthermore, 7 showed promising drug-like properties in stability and pharmacokinetic studies

    Discovery and SAR Evolution of Pyrazole Azabicyclo[3.2.1]octane Sulfonamides as a Novel Class of Non-Covalent N\u2011Acylethanolamine-Hydrolyzing Acid Amidase (NAAA) Inhibitors for Oral Administration

    Get PDF
    [Image: see text] Inhibition of intracellular N-acylethanolamine-hydrolyzing acid amidase (NAAA) activity is a promising approach to manage the inflammatory response under disabling conditions. In fact, NAAA inhibition preserves endogenous palmitoylethanolamide (PEA) from degradation, thus increasing and prolonging its anti-inflammatory and analgesic efficacy at the inflamed site. In the present work, we report the identification of a potent, systemically available, novel class of NAAA inhibitors, featuring a pyrazole azabicyclo[3.2.1]octane structural core. After an initial screening campaign, a careful structure–activity relationship study led to the discovery of endo-ethoxymethyl-pyrazinyloxy-8-azabicyclo[3.2.1]octane-pyrazole sulfonamide 50 (ARN19689), which was found to inhibit human NAAA in the low nanomolar range (IC(50) = 0.042 μM) with a non-covalent mechanism of action. In light of its favorable biochemical, in vitro and in vivo drug-like profile, sulfonamide 50 could be regarded as a promising pharmacological tool to be further investigated in the field of inflammatory conditions
    corecore