595 research outputs found

    Analysis of the diffusion process by pH indicator in microfluidic chips for liposome production

    Get PDF
    In recent years, the development of nano- and micro-particles has attracted considerable interest from researchers and enterprises, because of the potential utility of such particles as drug delivery vehicles. Amongst the different techniques employed for the production of nanoparticles, microfluidic-based methods have proven to be the most effective for controlling particle size and dispersity, and for achieving high encapsulation efficiency of bioactive compounds. In this study, we specifically focus on the production of liposomes, spherical vesicles formed by a lipid bilayer encapsulating an aqueous core. The formation of liposomes in microfluidic devices is often governed by diffusive mass transfer of chemical species at the liquid interface between a solvent (i.e., alcohol) and a non-solvent (i.e., water). In this work, we developed a new approach for the analysis of mixing processes within microfluidic devices. The method relies on the use of a pH indicator, and we demonstrate its utility by characterizing the transfer of ethanol and water within two different microfluidic architectures. Our approach represents an effective route to experimentally characterize diffusion and advection processes governing the formation of vesicular/micellar systems in microfluidics, and can also be employed to validate the results of numerical modelling

    A Homogenization Approach for Turbulent Channel Flows over Porous Substrates: Formulation and Implementation of Effective Boundary Conditions

    Get PDF
    The turbulent flow through a plane channel bounded by a single permeable wall is considered; this is a problem of interest since a carefully chosen distribution of grains and voids in the porous medium can result in skin friction reduction for the flow in the channel. In the homogenization approach followed here, the flow is not resolved in the porous layer, but an effective velocity boundary condition is developed (and later enforced) at a virtual interface between the porous bed and the channel flow. The condition is valid up to order two in terms of a small gauge factor, the ratio of microscopic to macroscopic length scales; it contains slip coefficients, plus surface and bulk permeability coefficients, which arise from the solution of microscale problems solved in a representative elementary volume. Using the effective boundary conditions, free of empirical parameters, direct numerical simulations are then performed in the channel, considering a few different porous substrates. The results, examined in terms of mean values and turbulence statistics, demonstrate the drag-reducing effects of porous substrates with streamwise-preferential alignment of the solid grains

    Animal models of rheumatoid pain: experimental systems and insights.

    Get PDF
    Severe chronic pain is one of the hallmarks and most debilitating manifestations of inflammatory arthritis. It represents a significant problem in the clinical management of patients with common chronic inflammatory joint conditions such as rheumatoid arthritis, psoriatic arthritis and spondyloarthropathies. The functional links between peripheral inflammatory signals and the establishment of the neuroadaptive mechanisms acting in nociceptors and in the central nervous system in the establishment of chronic and neuropathic pain are still poorly understood, representing an area of intense study and translational priority. Several well-established inducible and spontaneous animal models are available to study the onset, progression and chronicization of inflammatory joint disease, and have been instrumental in elucidating its immunopathogenesis. However, quantitative assessment of pain in animal models is technically and conceptually challenging, and it is only in recent years that inflammatory arthritis models have begun to be utilized systematically in experimental pain studies using behavioral and neurophysiological approaches to characterize acute and chronic pain stages. This article aims primarily to provide clinical and experimental rheumatologists with an overview of current animal models of arthritis pain, and to summarize emerging findings, challenges and unanswered questions in the field

    Antioxidant Supplementation Impairs Changes in Body Composition Induced by Strength Training in Young Women

    Get PDF
    International Journal of Exercise Science 12(2): 287-296, 2019. Strength training (ST) is known to promote muscle hypertrophy and body composition adaptations. However, only a few studies investigated the effects of ST combined with antioxidant supplementation (AS) on these adaptations. The aim of this study was to investigate chronic effects of ST combined with AS on fat mass (FM) and fat-free mass (FFM) of young women. In a double-blinded design, thirty-three subjects (22.9 ± 2.5 years, 57.7 ± 8.4 kg, 1.6 ± 0.6 m) were allocated into three groups: 1) vitamins (n=12), 2) placebo (n=11) and 3) control (n=10). Vitamins and placebo underwent a ST program for 10 weeks. Vitamins supplemented with vitamin C (1g/day) and E (400IU/day) during the training period. FM and FFM were assessed by DEXA. Multiple 3 x 2 (group x time) mixed- factor ANOVA with Tukey adjustment was performed to examine differences in the dependent variables. The significance level was set at P ≤ .05. Only placebo increased total FFM (34.9 ± 4.9 vs 36.3 ± 4.8 kg, P\u3c0.05) and decreased total FM (21.8 ± 7.8 vs 21.0 ± 8.3 kg, P\u3c0.05) after training for 10 weeks. Moreover, only placebo presented a significantly greater FFM percent change from pre to post-intervention compared to control (4.0 ± 3.4 vs -0.7 ± 3.1%, respectively, P \u3c 0.05). These results suggest that chronic AS can mitigate ST related improvements of body composition in young women

    MicroRNA as Possible Mediators of the Synergistic Effect of Celecoxib and Glucosamine Sulfate in Human Osteoarthritic Chondrocyte Exposed to IL-1β

    Get PDF
    This study investigated the role of a pattern of microRNA (miRNA) as possible mediators of celecoxib and prescription-grade glucosamine sulfate (GS) effects in human osteoarthritis (OA) chondrocytes. Chondrocytes were treated with celecoxib (1.85 µM) and GS (9 µM), alone or in combination, for 24 h, with or without interleukin (IL)-1β (10 ng/mL). Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, apoptosis and reactive oxygen species (ROS) by cytometry, nitric oxide (NO) by Griess method. Gene levels of miRNA, antioxidant enzymes, nuclear factor erythroid (NRF)2, and B-cell lymphoma (BCL)2 expressions were analyzed by quantitative real time polymerase chain reaction (real time PCR). Protein expression of NRF2 and BCL2 was also detected at immunofluorescence and western blot. Celecoxib and GS, alone or in combination, significantly increased viability, reduced apoptosis, ROS and NO production and the gene expression of miR-34a, -146a, -181a, -210, in comparison to baseline and to IL-1β. The transfection with miRNA specific inhibitors significantly counteracted the IL-1β activity and potentiated the properties of celecoxib and GS on viability, apoptosis and oxidant system, through nuclear factor (NF)-κB regulation. The observed effects were enhanced when the drugs were tested in combination. Our data confirmed the synergistic anti-inflammatory and chondroprotective properties of celecoxib and GS, suggesting microRNA as possible mediators

    MicroRNA as Possible Mediators of the Synergistic Effect of Celecoxib and Glucosamine Sulfate in Human Osteoarthritic Chondrocyte Exposed to IL-1β

    Get PDF
    This study investigated the role of a pattern of microRNA (miRNA) as possible mediators of celecoxib and prescription-grade glucosamine sulfate (GS) effects in human osteoarthritis (OA) chondrocytes. Chondrocytes were treated with celecoxib (1.85 µM) and GS (9 µM), alone or in combination, for 24 h, with or without interleukin (IL)-1β (10 ng/mL). Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, apoptosis and reactive oxygen species (ROS) by cytometry, nitric oxide (NO) by Griess method. Gene levels of miRNA, antioxidant enzymes, nuclear factor erythroid (NRF)2, and B-cell lymphoma (BCL)2 expressions were analyzed by quantitative real time polymerase chain reaction (real time PCR). Protein expression of NRF2 and BCL2 was also detected at immunofluorescence and western blot. Celecoxib and GS, alone or in combination, significantly increased viability, reduced apoptosis, ROS and NO production and the gene expression of miR-34a, -146a, -181a, -210, in comparison to baseline and to IL-1β. The transfection with miRNA specific inhibitors significantly counteracted the IL-1β activity and potentiated the properties of celecoxib and GS on viability, apoptosis and oxidant system, through nuclear factor (NF)-κB regulation. The observed effects were enhanced when the drugs were tested in combination. Our data confirmed the synergistic anti-inflammatory and chondroprotective properties of celecoxib and GS, suggesting microRNA as possible mediators

    Jaws from the deep: biological and ecological insights on the kitefin shark Dalatias licha from the Mediterranean Sea

    Get PDF
    Due to their late maturation, extreme longevity, low fecundity and slow growth rates, deep-sea Chondrichthyes are extremely vulnerable to human impacts. Moreover, assessing the impact of deep-sea fisheries is difficult, as many species (including sharks) are part of the bycatch and are often discarded at sea, and/or landed under generic commercial-species codes. The lack of this information on fishery data sets and the limited availability of species-specific life history data make challenging the management of deep-sea Chondrichthyes. The kitefin shark Dalatias licha is a cosmopolitan elasmobranch, mainly found on continental and insular shelf-breaks and slopes in warm-temperate and tropical waters. This species is a common by-catch of the deep-sea trawling, considered as “Endangered” by the IUCN Red List for all European waters, Mediterranean Sea included. Here we present the results of a study based on a total of 78 specimens of kitefin shark collected over 3 years in the Ligurian Sea (NW Mediterranean) as by-catch from deep-water fisheries. Total length ranged from 380 to 1164 mm, and individual weight ranged from 198 to 8000 g. Immature and mature individuals showed a sex ratio dominated by males. Adult males were observed throughout the year, while mature females were observed only in spring-summer. These data lead to hypothesise a spatial segregation between genders. The kitefin shark diet was dominated by bony fish (mainly Macrouridae) and other small sharks (e.g., Galeus melastomus and Etmopterus spinax), but their gut included plastic items and parasites. Data reported here underline the rarity, complex ecology and the threat for this shark species and support the urgency of promoting initiatives for their monitoring and conservation

    Intermittent control models of human standing: similarities and differences

    Get PDF
    Two architectures of intermittent control are compared and contrasted in the context of the single inverted pendulum model often used for describing standing in humans. The architectures are similar insofar as they use periods of open-loop control punctuated by switching events when crossing a switching surface to keep the system state trajectories close to trajectories leading to equilibrium. The architectures differ in two significant ways. Firstly, in one case, the open-loop control trajectory is generated by a system-matched hold, and in the other case, the open-loop control signal is zero. Secondly, prediction is used in one case but not the other. The former difference is examined in this paper. The zero control alternative leads to periodic oscillations associated with limit cycles; whereas the system-matched control alternative gives trajectories (including homoclinic orbits) which contain the equilibrium point and do not have oscillatory behaviour. Despite this difference in behaviour, it is further shown that behaviour can appear similar when either the system is perturbed by additive noise or the system-matched trajectory generation is perturbed. The purpose of the research is to come to a common approach for understanding the theoretical properties of the two alternatives with the twin aims of choosing which provides the best explanation of current experimental data (which may not, by itself, distinguish beween the two alternatives) and suggesting future experiments to distinguish between the two alternatives

    A film-forming graphene/diketopyrrolopyrrole covalent hybrid with far-red optical features: Evidence of photo-stability

    Get PDF
    A dianiline derivative of a symmetric donor-acceptor-donor diketopyrrolopyrrole-based dye is employed for the two-sided covalent functionalization of liquid exfoliated few layers graphene flakes, through a direct arylation reaction. The resulting nanohybrid features the properties of a polymeric species, being solution-processed into homogeneous thin films, featuring a pronounced red-shift of the main absorption band with respect to the model dye unit and energy levels comparable to those of common diketopyrrolopyrrole-based polymers. A good electrical conductivity and the absence of radical signals generated after intense white light illumination, as probed through electron paramagnetic resonance, suggest a possible future application of this composite ma- terial in the field of photoprotective, antistatic layers with tunable colors
    • …
    corecore