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Abstract: The turbulent flow through a plane channel bounded by a single permeable wall is
considered; this is a problem of interest since a carefully chosen distribution of grains and voids
in the porous medium can result in skin friction reduction for the flow in the channel. In the
homogenization approach followed here, the flow is not resolved in the porous layer, but an effective
velocity boundary condition is developed (and later enforced) at a virtual interface between the
porous bed and the channel flow. The condition is valid up to order two in terms of a small gauge
factor, the ratio of microscopic to macroscopic length scales; it contains slip coefficients, plus surface
and bulk permeability coefficients, which arise from the solution of microscale problems solved
in a representative elementary volume. Using the effective boundary conditions, free of empirical
parameters, direct numerical simulations are then performed in the channel, considering a few
different porous substrates. The results, examined in terms of mean values and turbulence statistics,
demonstrate the drag-reducing effects of porous substrates with streamwise-preferential alignment
of the solid grains.

Keywords: turbulent channel flow; porous substrate; drag reduction; homogenization; effective
boundary conditions

1. Introduction

The large skin-friction drag characterizing wall-bounded turbulent flows, as compared
to laminar ones, represents a major challenge in engineering applications where efficiency
and running costs of fluid transport systems are of interest. This has motivated several
experimental and numerical studies aimed at a better understanding of the phenomenon
of turbulence production and generation of Reynolds shear stress in such flows [1–4]; the
coherent structures in the inner region of the wall layer and the bursting (ejection) and
sweep (inrush) events related to such structures have been the object of intense research
activities [5–8]. The design of active or passive techniques for turbulent drag reduction
requires in-depth understanding of the interacting mechanisms which contribute to near-
wall turbulence, in order for its effective control. The near-wall flow is characterized by a
self-sustaining cycle responsible for the regeneration of turbulent fluctuations, owing to the
dynamic interaction between longitudinal velocity streaks and quasi-streamwise vortices;
this cycle is independent of the nature of the outer flow [9]. Attenuating (or suppressing)
any of the processes involved in this autonomous cycle can lead to a less disturbed flow
field (or even to relaminarization) [9], a clear advantage when the objective of the control is
skin-friction drag.

Many investigations have been conducted to optimize and assess the effectiveness
and feasibility of active and passive drag reduction techniques, to favorably alter the
structure of the turbulent boundary layer. Active techniques, involving energy input, have
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proved to yield significant drag reduction in wall-bounded turbulent flows. For instance,
optimized uniform blowing of the fluid through a spanwise slot can produce a local drag
reduction of 80% downstream of the slot [10], while sufficiently high suction rates through
a short porous flush-mounted strip can allow for local relaminarization of the turbulent
boundary layer, resulting in a drag reduction of more than 50% [11]. Counter-rotating
large-scale streamwise vortices, externally initiated by a transverse array of longitudinal
plasma actuators, can stabilize the streaks in the near-wall flow and attenuate the coherent
structures, interrupting the turbulence regeneration cycle; a drag reduction of more than
25% can be achieved [12,13]. Other studies focused on forcing wall-normal fluctuations [14]
or in-plane wall oscillations [15,16]. Passive drag reduction techniques have also been
investigated extensively, along with remarkable advances in bio-inspired designs. Riblets
(longitudinal surface grooves) have proved to mitigate the velocity fluctuations near the
wall, resulting in a more uniform flow field [17]; studies on different configurations of
riblets revealed that an optimized drag reduction of almost 10% can be achieved [18].
Super-hydrophobic surfaces can reduce drag up to approximately 80% under optimal
conditions, mainly due to the large effective slip of aqueous solutions on the walls [19].
The ability of anisotropic permeable substrates to reduce skin-friction drag in turbulent
channel flows has recently attracted much interest; this constitutes the main objective of
the present study.

Porous substrates are encountered in various natural and engineering applications,
and have been a source of inspiration for many studies in which the influence of wall
permeability has been assessed on the behavior of the overlying turbulent boundary layer
and ensuing drag alteration. Several configurations of the porous substrate have been
investigated, with different values of the porosity (θ) and at different flow conditions. The
main parameters tested in previous studies are the diagonal components of the permeabil-
ity tensor of the porous medium (Kxx, Kyy, Kzz) and the Navier-slip coefficients (λx, λz)
at the dividing surface between the free-fluid region in the channel and the permeable
layer. In the following, x, y and z denote, respectively, the streamwise, wall-normal and
spanwise directions. The numerical work by Rosti et al. [20] on turbulent channel flows
over isotropic porous substrates (Kxx = Kyy = Kzz) has shown that even small values of
the medium permeability can affect the response of the adjacent turbulent boundary layer:
the disturbances were found to be intensified and the Reynolds stresses enhanced, with a
consequent increase in skin-friction drag. This is in general agreement with the findings
of earlier studies [21–23]. A similar behavior of disturbance intensification is observed
when the porous substrates have preferential spanwise permeability. Wang et al. [24]
investigated the dynamic interaction between a turbulent channel flow and a porous bed
made of spanwise-aligned cylinders, for which Kzz > Kxx = Kyy. The structure of the
blowing (upwelling) and suction (downwelling) events through the pores has been analyzed,
particularly in terms of their role on the onset of the Kelvin–Helmholtz instability near
the permeable wall. Other studies have focused on permeable walls potentially capable to
yield turbulent drag reduction. Rosti et al. [25] studied the turbulent flow over anisotropic
porous beds characterized by equal values of the permeability in the streamwise and the
spanwise directions, i.e., Kxx = Kzz 6= Kyy. They showed that a drag reduction of up
to 20% can be achieved from walls of high in-plane permeability (Kxx = Kzz >> Kyy),
whereas the skin-friction drag may increase by the same amount for substrates of pref-
erential wall-normal permeability. Among the different configurations considered in the
literature, the use of porous substrates of preferential permeability along the streamwise
direction, consisting, e.g., of longitudinal cylinders with Kxx >> Kzz = Kyy, appears to
provide the best results in terms of turbulent drag reduction. The drag reduction curves for
this configuration are similar to those of riblets [26], and the theory behind the ability of
such substrates to reduce skin-friction drag has been elaborated by Abderrahaman-Elena
and García-Mayoral [27]. Conceptually, the drag reduction (DR) is proportional to the dif-
ference between the slip lengths along the streamwise and the spanwise directions, that is,
DR ≈ µ0(λ

+
x − λ+

z ) [28,29], which has been approximated by µ0 ξ
(√
K+

xx −
√
K+

zz

)
[27].
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All the macroscopic parameters are measured in wall units and this is indicated by the
superscript ‘+’; the coefficient µ0 is a function of the Reynolds number [30], while the
parameter ξ characterizes the inter-connectivity of the flow between the pores [27]. The
relation above in terms of the square root of the permeability components holds for sub-
strates of relatively low wall-normal permeability; if K+

yy exceeds some critical threshold,
Kelvin–Helmholtz-like rollers are developed near the interface, and the drag reduction
mechanism is adversely affected [31].

With the significant progress in manufacturing and fabrication techniques, the study of
the interaction between the microscale features of the surface (such as roughness, porosity,
irregularity, compliance, etc.) and the adjacent fluid flow has become more important
for several applications. The numerical complexity of fully resolving the micro-details of
the surface in Direct Numerical Simulations (DNS) or even in Large Eddy Simulations
(LES) of turbulence represents a challenge, especially if optimization of the surface is
the ultimate goal. The multiscale homogenization approach adopted in this paper is a
mathematical framework through which the rapidly varying properties of the surface
(the porous substrate in the present case) can be replaced by upscaled properties such
as slip, interface permeability, etc. [32,33], which contribute to the definition of effective
boundary conditions at a virtual plane surface. The macroscale behavior of, for instance,
the turbulent channel flow is then targeted, bypassing the need to fully resolve the motion
within the permeable substrate; the mesh requirements of the numerical simulations are
therefore significantly alleviated. Multiscale homogenization has been known and used
by applied mathematicians for a long time. In more recent years, it has been rediscovered
and applied to a variety of physically relevant cases. Although the classical first-order
slip condition over a generic solid surface, proposed by Navier [34], was based on em-
pirical considerations concerning the near-wall flow behavior, recent studies adopting
the homogenization technique have provided a robust mathematical framework for the
estimation of Navier’s slip length, λ, without the need for any ad hoc correlation [35]. A
tensorial generalization of the first-order Navier’s slip condition over a micro-textured
surface was given by Zampogna et al. [36], via the definition of a third-order slip tensor
which depends on the geometry of the roughness pattern. The homogenized model was
later extended to study the fluid motion over deformable riblets, to assess the potential drag
reduction [37]. The so-called transpiration-resistance model by Lācis et al. [38] shed light on
the role of the wall-normal velocity at the fictitious interface in improving the predictions
of the homogenization-based direct simulations for turbulent flows over micro-patterned
surfaces. The homogenization model for the flow over a rough surface was later pushed to
third-order in terms of a small parameter, ratio of microscopic to macroscopic length scales,
by Bottaro and Naqvi [39]. Most recently, the asymptotic homogenization theory has been
employed by Ahmed et al. [40] to study buoyancy-driven flows over vertical rough surfaces,
by deriving and implementing upscaled velocity and temperature boundary conditions at
a smooth virtual surface. Effective boundary conditions at the interface between a porous
bed and an unconfined flow region have been explored by Sudhakar et al. [41] and by
Naqvi and Bottaro [42].

In this work, asymptotic homogenization is used to derive second-order accurate effec-
tive boundary conditions for the three velocity components at a fictitious interface, chosen
tangent to the porous material, to macroscopically mimic the effects of the small-scale
features of an anisotropic porous layer on a turbulent boundary layer. The technique relies
on reconstructing the microscale problem via asymptotic expansions of the microscopic
dependent variables (velocity components and pressure) in powers of a small parameter ε,
which represents the ratio between two well-separated scales, for instance the periodicity
of the porous pattern (microscopic length scale) and half the channel height (macroscopic
length scale). The problem is then solved up to any order in ε via numerical solution of
ad hoc auxiliary systems which hold in a doubly periodic representative elementary volume.
The equations governing the physical problem, the domain decomposition, and the chosen
scales for each sub-domain are outlined in Section 2, with detailed explanation of the
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adopted asymptotic approach and with illustration of the numerical solutions for the auxil-
iary problems that arise. Different configurations of the porous substrate are considered
for the evaluation of the macroscopic coefficients of the model, in particular, spanwise-
and streamwise-aligned elements of two different shapes.The macroscopic problem is
addressed in Section 3. A direct numerical simulation was first conducted for a turbulent
flow through a channel with smooth, impermeable walls at Reτ ≈ 190, to validate the
numerical code, the domain size, etc. The wall-bounded turbulent flow over a porous
substrate is then considered. Standard turbulence statistics are compared for different
porous substrates, and consequent skin-friction drag increase/reduction is indicated. The
main findings of the study are highlighted in the concluding section.

2. The Homogenization Model

This section is dedicated to providing the details to derive effective boundary conditions
at the fictitious interface between a channel flow and a porous substrate underneath. The
procedure represents an extension of the model by Naqvi and Bottaro [42], in which
only isotropic or two-dimensional porous media were analyzed; in the present work, a
three-dimensional, transversely isotropic, permeable bed is considered.

2.1. Governing Equations and Domain Decomposition

Let us consider, for instance, a porous substrate made of regularly arranged, streamwise-
aligned solid inclusions with given periodicity in the spanwise and wall-normal directions,
cf. Figure 1. It is possible to identify two characteristic length scales, a microscopic one re-
lated to the porous medium, l (the periodicity of the configuration), and a macroscopic one
related to the large-scale motion in the channel, H (half the channel thickness). The mass
and momentum conservation equations governing the flow of a viscous, incompressible,
Newtonian fluid can be expressed in terms of the dimensional variables •̂ as follows:

∂ûi
∂x̂i

= 0, ρ

(
∂ûi

∂t̂
+ ûj

∂ûi
∂x̂j

)
= − ∂ p̂

∂x̂i
+ µ

∂2ûi

∂x̂2
j

, (1)

with ρ the fluid density, µ the dynamic viscosity, p̂ the pressure, ûi the velocity components
(û1 = û, û2 = v̂, û3 = ŵ), x̂i the space coordinates (x̂1 = x̂, x̂2 = ŷ, x̂3 = ẑ), and t̂ time. The
streamwise direction (x̂1), the wall-normal direction (x̂2), and the spanwise direction (x̂3)
are indicated in Figure 1.

Figure 1. Sketch of the full domain for the case of streamwise-aligned cylindrical inclusions. The
left frame illustrates in a constant x̂-section the decomposition of the domain into three distinct sub-
regions; the brown volume represents the doubly periodic elementary cell of the microscopic problem.

Provided that l � H, the microscopic problem is amenable to a multiple-scale ex-
pansion in terms of a small parameter ε = l/H � 1. The full domain is decomposed
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into three sub-domains: a channel-flow region away from the interface (superscript “C”),
an interface region (superscript “I”) and a region within the porous layer away from
boundaries, governed by Darcy’s law (superscript “P”). The normalized variables in the
three regions are introduced as follows:

Channel-flow region C :

Xi = x̂i/H, PC = p̂/(ρU 2), UCi = û/U . (2)

Interface region I :

xi = x̂i/`, PI = p̂/(µU/H), UIi = ε−1û/U . (3)

Porous region P :
xi = x̂i/`, PP = p̂/(µU/H), UPi = ε−2û/U , (4)

with U a suitable macroscopic velocity scale, for instance the bulk velocity in 0 ≤ ŷ ≤ 2H.
The normalization above leads to the following dimensionless systems in the •C , •I , and
•P regions, respectively;

∂UCi
∂Xi

= 0,
∂UCi
∂t

+ UCj
∂UCi
∂Xj

= −∂PC

∂Xi
+

1
Re

∂2UCi
∂X2

j
, (5)

∂UIi
∂xi

= 0, ε2Re

(
∂UIi

∂t
+ UIj

∂UIi
∂xj

)
= −∂PI

∂xi
+

∂2UIi
∂x2

j
, (6)

ε
∂UPi
∂xi

= 0, ε4Re UPj
∂UPi
∂xj

= −∂PP

∂xi
+ ε

∂2UPi
∂x2

j
, (7)

with Re =
ρUH

µ
. In the channel-flow region, the dependent variables are function

of the macroscopic coordinates Xi only, whereas, in the intermediate and porous re-
gions, the dependent variables depend on both microscopic and macroscopic coordinates
(xi, Xi respectively). The continuity of the fields across the interface between the •C and
•I regions is represented by matching the velocity and the traction vectors at a dividing
surface. If x2 = y = y∞ is taken to be the microscopic vertical coordinate of this interface,
and Y = Y = εy∞ is the macroscopic vertical position at which the effective conditions are
enforced, the matching conditions may be written as follows:

lim
y→y∞

UIi =
1
ε

lim
Y→Y

UCi , (8)

lim
y→y∞

−PIδi2 +
∂VI

∂xi
+

∂UIi
∂y

= lim
Y→Y

−Re PCδi2 +
∂VC

∂Xi
+

∂UCi
∂Y

, (9)

with δij the Kronecker index. The conditions above are acceptable provided y∞ is sufficiently
large for the •I variables to become independent of x and z there. Should this not be the
case, integration of the interface variables along the x and z direction must be performed
before matching velocity and traction components.

2.2. Asymptotic Analysis of the Microscale Problem

The velocity and pressure fields in porous and interface regions are asymptotically
expanded in terms of ε, for instance U I

i = u(0)
i + εu(1)

i + ε2u(2)
i + . . . , and the gradients
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are recast based on the chain rule (
∂

∂xi
→ ∂

∂xi
+ ε

∂

∂Xi
). The asymptotic expressions are

plugged into the microscale governing equations and read:{
∂iui = −ε ∂′iu

(0)
i +O

(
ε2),

−∂i p + ∂2
j ui = ε

[
∂′i p

(0) − 2 ∂j∂
′
ju

(0)
i

]
+O

(
ε2), (10)

with the microscopic and macroscopic derivatives indicated, respectively, by

∂i =
∂

∂xi
, ∂′i =

∂

∂Xi
.

The microscale problem can be reconstructed at different orders of ε. The leading-order
problem reads:

O(1) :


∂iu

(0)
i = 0,

−∂i p(0) + ∂2
j ui

(0) = 0,

−p(0)δi2 + ∂2u(0)
i + ∂iu

(0)
2

∣∣∣
y∞

= SCi2.
(11)

At the next order we obtain:

O(ε) :


∂iu

(1)
i = −∂′iu

(0)
i ,

−∂i p(1) + ∂2
j u(1)

i = ∂′i p
(0) − 2∂j∂

′
ju

(0)
i ,

−p(1)δi2 + ∂2u(1)
i + ∂iu

(1)
2

∣∣∣
y∞

= −∂′2u(0)
i + ∂′iu

(0)
2

∣∣∣
y∞

,
(12)

where SCi2 is the macroscopic traction vector evaluated at Y = Y , i.e.,

SCi2 = σC · e2|Y=Y =

(
∂UC

∂Y
+

∂VC

∂X
,−RePC + 2

∂VC

∂Y
,

∂WC

∂Y
+

∂VC

∂Z

)∣∣∣∣
Y=Y

, (13)

with σC as the stress tensor. From now on, the superscript •C is omitted when referring to
outer flow dependent variables.

Owing to the linearity of Equations (11) and (12), generic forms of the solutions can be
assumed. For the leading-order problem, the dependent variables can be expressed as{

u(0)
i = u†

ijSj2,
p(0) = p†

j Sj2,
(14)

with the new parameters, u†
ij and p†

j functions of only xi. Three decoupled systems of equa-
tions, the so-called auxiliary problems, arise from substituting the preceding expressions
into Equation (11); they can be summarized as follows:

∂iu†
ij = 0,

−∂i p†
j + ∂2

l u†
ij = 0,(

−p†
j δi2 + ∂2u†

ij + ∂iu†
2j

)∣∣∣
y∞

= δij,
(15)

where the three microscopic problems corresponds to j = 1, 2, 3. For j = 2, one finds the
simple analytical solution:

u†
i2 = 0, p†

2 = −1.

These results will directly enter, and simplify, the O(ε) problems.
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At O(ε), the following generic forms hold: u(1)
i = u‡

ijk ∂′kSj2,

p(1) = p‡
jk ∂′kSj2.

(16)

This leads to 
−∂i∂iu

‡
ijk = −u†

kj,

p‡
jk − p†

j δki + ∂2
l u‡

ijk + 2∂ku†
ij = 0,(

−p‡
jkδi2 + ∂2u‡

ijk + ∂iu
‡
2jk

)∣∣∣
y∞

= −
(

u†
ijδk2 + u†

2jδik

)∣∣∣
y∞

,
(17)

which are nine decoupled problems to be solved in the microscopic cell, for j, k = 1, 2, 3.
All these problems are subject to periodicity along x and z (for streamwise-aligned solid
inclusions) and to the no-slip condition on the solid grains of the porous medium.

Numerical results are sought, in particular, at y = y∞, since u†
ij

∣∣∣
y∞

and u‡
ijk

∣∣∣
y∞

are

eventually the numerical coefficients needed to close the macroscopic effective condi-
tions. These conditions arise from matching the velocity vector at the specified interface
(cf. Equation (8)); finally, the second-order accurate upscaled conditions at the dividing
surface are:

Ui|Y=εy∞
= ε

(
u(0)

i

∣∣∣
y∞

+ ε u(1)
i

∣∣∣
y∞

)
+O(ε3) = ε ũij

∣∣
y∞

Sj2 + ε2 u‡
ijk

∣∣∣
y∞

∂Sj2

∂Xk
+O(ε3). (18)

2.3. Numerical Solutions of the Auxiliary Systems

With the aid of the Comsol Multiphysics® software (version 5.2, COMSOL Inc, Stock-
holm, Sweden), the auxiliary systems formulated in Section 2.2 are solved on a microscopic
elongated domain, considering streamwise-aligned cylindrical inclusions. Specifically, the
domain consists of a xyz box of sides [1, 2y∞, 1]; cf. Figure 2. The value of y∞ is speci-
fied such that the microscopic fields are homogeneous in x and z near y = y∞. It was
numerically confirmed that y∞ = 5 is sufficient to satisfy the preceding condition. The
dividing surface is set at y = 0, the surface tangent to the uppermost cylinder, so that half
of the domain (0 < y ≤ y∞) is above it and the other half (−y∞ ≤ y < 0) is below it. For
−y∞ ≤ y < 0, identical longitudinal cylinders are present, regularly spaced of one unit of
length along y. The diameter of the cylinders was changed to study the effects of varying
the porosity of the substrate, defined as θ = V f luid/Vtot, with V f luid and Vtot the fluid’s
volume in a cubic unit cell within the porous domain and the total volume of the unit cell,
respectively.

The numerical solutions of the auxiliary sub-systems related to the O(1) problem,
i.e., Equation (15), reveal that u†

11 and u†
33 are the only variables which do not vanish at

the matching surface (y = y∞ = 5). The contours of the two parameters throughout the
microscopic domain are displayed in Figure 2; for brevity, fields of the other variables are
not presented. Subsequently, the effect of varying the location of the matching interface
was considered, by gradually increasing the value of y∞ and monitoring the behaviors of
u†

11 and u†
33. Linear trends have been detected, in the same manner as for the case of the

fluid motion over a rough surface [39], i.e.,

u†
11

∣∣∣
y∞

= y∞ + λx, u†
33

∣∣∣
y∞

= y∞ + λz, (19)

with λx and λz the dimensionless Navier-slip coefficients in the streamwise and the span-
wise directions, respectively.
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Figure 2. A full microscopic domain (in grey) with two-dimensional zy−plane (in red) over which
contours of u†

11 and u†
33 are shown, for θ = 0.5.

Solutions of the higher-order systems were then sought. The following trends of the
microscopic parameters, with non-zero magnitudes at the matching interface, are obtained
(the reader is referred to [39,42] for more details about the procedure):

−u‡
211

∣∣∣
y∞

= u‡
121

∣∣∣
y∞

= 0.5 y2
∞ + λx y∞ +Kit f

xy ,

−u‡
233

∣∣∣
y∞

= u‡
323

∣∣∣
y∞

= 0.5 y2
∞ + λz y∞ +Kit f

zy ,

u‡
222

∣∣∣
y∞

= Kyy,

(20)

where Kyy is a medium permeability component, while Kit f
xy and Kit f

zy are interface
permeabilities.

At this point, it is advantageous to extrapolate the solutions of the parameters of
interest to a matching interface located at y = 0. This can be achieved simply by setting
y∞ = 0 in the fitting relations (Equations (19) and (20)). Thus, the values of the coefficients
λx, λz,Kit f

xy ,Kit f
zy and Kyy are sufficient to describe the presence of the permeable interface

up to the second order in terms of ε, by enforcing effective boundary conditions on the
plane y = 0. These coefficients characterize the microstructure of the porous substrate;
for instance, they are dependent on the shape of the inclusions, their orientation and the
porosity θ.

Simple methods can also be adopted to calculate the coefficients of interest, based
on previous findings [39,42]. The Navier-slip coefficients (λx, λz) can be computed by
averaging the fields of u†

11 and u†
33 (those shown in Figure 2), respectively, over the plane

y = 0. The numerical values of Kit f
xy and Kit f

zy can be recovered by taking the following
volume integrals:

Kit f
xy =

∫
V f Por

u†
11 dV,

Kit f
zy =

∫
V f Por

u†
33 dV,

(21)

where V f Por denotes the whole fluid volume in the elementary cell below the interface. This
method is particularly convenient since it means that interface permeabilities are already
available from the O(1) problems, i.e., there is no need to solve the O(ε) ones to compute
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them. Finally, as far as Kyy is concerned, one can compute it by simulating the O(ε) system
governing u‡

222 in a fully periodic unit cell (cf. Figure 3) and evaluating the integral:

Kyy =
∫
V f luid

u‡
222 dV. (22)

Should they be needed, the other diagonal components of the medium permeability tensor
can be retrieved in the following way:

Kxx =
∫
V f luid

u‡
121 dV,

Kzz =
∫
V f luid

u‡
323 dV.

(23)

We remark that, in this case, Kxx and Kzz do not correspond to any value of u‡
ijk

∣∣∣
y∞=0

,

and do not contribute to the interface conditions. Eventually, the following values of the
macroscopic coefficients were attained for the case of longitudinal cylindrical inclusions
with porosity θ = 0.5:

λx = 0.06883, λz = 0.04513, Kit f
xy = 0.005561, Kit f

zy = 0.002220, (24)

Kxx = 0.006966, Kyy = 0.001828, Kzz = 0.001828.

Figure 3. A fully periodic unit cell over which fields of u‡
121, u‡

222 and u‡
323 are shown for θ = 0.5.

2.4. Formal Expressions of the Effective Boundary Conditions

The effective boundary conditions are

U|Y=0 = ελxS12|Y=0 + ε2Kit f
xy

∂S22

∂X

∣∣∣∣
Y=0

+O
(

ε3
)

, (25)

V|Y=0 = − ε2Kit f
xy

∂S12

∂X

∣∣∣∣
Y=0
− ε2Kit f

zy
∂S32

∂Z

∣∣∣∣
Y=0

+ ε2Kyy
∂S22

∂Y

∣∣∣∣
Y=0

+O
(

ε3
)

, (26)

W|Y=0 = ελzS32|Y=0 + ε2Kit f
zy

∂S22

∂Z

∣∣∣∣
Y=0

+O
(

ε3
)

, (27)

with the stresses Si2 defined by Equation (13). Alternatively, the effective conditions, valid
up to second order in ε, may be written in the following dimensional form:

û|0 ≈ λ̂x

(
∂û
∂ŷ

+
∂v̂
∂x̂

)∣∣∣∣
0
+
K̂it f

xy

µ

∂

∂x̂

(
− p̂ + 2µ

∂v̂
∂ŷ

)∣∣∣∣∣
0

, (28)

v̂|0 ≈
K̂yy

µ

∂

∂ŷ

(
− p̂ + 2µ

∂v̂
∂ŷ

)∣∣∣∣∣
0

− K̂it f
xy

∂

∂x̂

(
∂û
∂ŷ

+
∂v̂
∂x̂

)∣∣∣∣
0
− K̂it f

zy
∂

∂ẑ

(
∂ŵ
∂ŷ

+
∂v̂
∂ẑ

)∣∣∣∣
0
, (29)
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ŵ|0 ≈ λ̂z

(
∂ŵ
∂ŷ

+
∂v̂
∂ẑ

)∣∣∣∣
0
+
K̂it f

zy

µ

∂

∂ẑ

(
− p̂ + 2µ

∂v̂
∂ŷ

)∣∣∣∣∣
0

, (30)

where the dimensional model coefficients are defined by introducing the length microscale
l = εH, as follows:

λ̂x, z = λx, z l, K̂it f
xy, zy = Kit f

xy, zy l2, K̂yy = Kyy l2. (31)

2.5. The Role of the Porosity: Parametric Study

The values of the model coefficients have already been stated in (24) for the specific
case of streamwise-aligned cylinders with a porosity of 0.5; however, it is practically
advantageous to generate a database of these geometry-dependent parameters to cover a
wide range of θ, so that the model can be directly implemented in optimization studies at
a future stage. A range of 0.215 ≤ θ ≤ 0.99 is considered in the parametric analysis. The
values of the upscaled coefficients have been estimated, following the numerical procedure
described earlier in Section 2.3. The results are listed in Table 1, and are graphically
presented in Figure 4. The minimum possible value of the porosity (θ = 0.215) is related to
a cylinder diameter equal to one; for this configuration, the physical interface between the
channel flow and the porous substrate becomes impermeable in the wall-normal direction
(Kyy = 0), and the case of flow over semi-circular riblets (instead of a porous substrate)
is retrieved. It can be realized from Figure 4 that all coefficients monotonically increase
with θ. It should be observed that high values of θ are not representative of typical porous
media, aside from perhaps the case of sparse canopies.

Figure 4. Variation of the model coefficients (Table 1) against porosity (θ).
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Table 1. Numerical values of the macroscopic coefficients at different values of the porosity, for the
case of longitudinal cylindrical inclusions.

θ λx λz Kyy = Kzz Kxx Kit f
xy Kit f

zy

0.215 5.883×10−2 4.103 ×10−2 0 1.217 ×10−3 3.814 ×10−3 1.823 ×10−3

0.500 6.883 ×10−2 4.513 ×10−2 1.828 ×10−3 6.966 ×10−3 5.561 ×10−3 2.220 ×10−3

0.600 7.398 ×10−2 4.713 ×10−2 4.331 ×10−3 1.212 ×10−2 6.737 ×10−3 2.410 ×10−3

0.700 8.167 ×10−2 4.992 ×10−2 9.587 ×10−3 2.222 ×10−2 9.042 ×10−3 2.657 ×10−3

0.800 9.347 ×10−2 5.385 ×10−2 1.990 ×10−2 4.179 ×10−2 1.410 ×10−2 2.965 ×10−3

0.900 1.130 ×10−1 6.010 ×10−2 3.970 ×10−2 8.031 ×10−2 2.638 ×10−2 4.113 ×10−3

0.990 1.953 ×10−1 8.912 ×10−2 1.255 ×10−1 2.534 ×10−1 1.075 ×10−1 2.960 ×10−2

3. The Macroscale Problem: Setup, Results and Discussion

This section is mainly dedicated to the macroscale problem concerning the turbu-
lent channel flow over a porous substrate; the effective boundary conditions at the sub-
strate/channel virtual interface, obtained in Section 2, are employed, with the macroscale
coefficients corresponding to different configurations of the porous bed, for detecting,
comparing and analyzing the skin-friction drag increase/reduction. The direct numerical
simulation of the turbulent flow through a smooth, impermeable channel is conducted
first (Section 3.1). The main objectives of this preliminary step are to (i) assess the accuracy
of the CFD code, (ii) confirm the adequacy of the domain size and the grid by means of
extensive validation using the rich literature on smooth channel flow, and (iii) provide
baseline results to which the main statistics of channel flows over permeable walls are later
compared (Section 3.2).

3.1. Channel Flow with Smooth, Impermeable Walls
3.1.1. Simulation Definition and Numerical Schemes

The computational domain is sketched in Figure 5a. The dimensions in the streamwise
direction (LX), the wall-normal direction (LY) and the spanwise direction (LZ) are normal-
ized with half the channel height (H); LY = 2 by definition, while the values LX ≈ 2π
and LZ ≈ π are chosen. The no-slip/no-transpiration boundary condition are enforced at
the upper and lower walls (U = V = W = 0). Since the flow is fully developed, periodic
boundary conditions of the velocity vector and the pressure are used along the stream-
wise and spanwise directions (cf. Figure 5b). The flow is forced by a uniform volumetric
momentum source term in the X-direction, with a value M = 1; therefore, a wall shear
stress τw of 1 (at lower and upper walls) is expected as the bulk balance between forces is
reached. If the value of the fluid density in Equation (1) is ρ = 1 and the dynamic viscosity
is µ ≈ 1/190, the shear velocity (uτ =

√
τw/ρ) is equal to 1 so that the friction Reynolds

number (Reτ = ρ uτ H/µ) is approximately 190.
The governing equations are discretized with the finite volume method, as by the im-

plementation of the Simcenter STAR-CCM+ multiphysics software (version 16.02.009-R8).
The hybrid MUSCL 3rd-order/central-differencing scheme was employed for spatial dis-
cretization. The scheme combines boundedness and accuracy; under smooth local flow
conditions, it is formulated as a linear blend between a MUSCL 3rd-order upwind scheme
and a 3rd-order central-differencing scheme, with an upwind blending factor equal to
0.1. The reader is referred to [43] for details on the MUSCL/CD approach. A structured
three-dimensional grid was generated (Figure 5c). The mesh is uniform in streamwise and
spanwise directions, where the respective spacings of the grid (in wall units) are h+X ≈ 9.47
and h+Z ≈ 6.32. The grid is gradually stretched in the wall-normal direction to obtain
thinner elements near the walls (h+Y ≈ 0.29) and thicker near the centerline (h+Y ≈ 8.25).
A second-order implicit scheme was used for temporal discretization. To maintain the
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maximum Courant number below 1, a time step of 0.0015 was applied (the time scale is
H
uτ

).

The SIMPLE algorithm was used for pressure-velocity coupling.
Two critical points should be highlighted. First, the size of the computational do-

main is, in general, smaller than that used in some previous numerical studies. For
instance, the dimensions LX = 4π and LZ = 4

3 π were chosen in [4], while the dimensions
LX = 4π and LZ = 2π were used in [44], compared to LX = 2π and LZ = π in the
present study. Second, the finite volume method used in this work is not the standard
discretization approach followed in the literature dealing with the direct simulation of
turbulent channel flow. The majority of previous studies adopted either a fully spectral
Fourier–Chebyshev spatial discretization method [4,44,45] or a staggered high-order finite
difference method [4,46,47]. The points above indicate that a comprehensive validation of
the present setup is recommended.

Figure 5. Simulation setup for smooth, impermeable channel case: (a) dimensions of the computa-
tional domain; (b) boundary conditions; (c) grid structure and specifications.

3.1.2. Results and Validation

First, the simulation was run for about 130 time units to establish the turbulence
perturbations and go beyond the initial transient of the flow field. The statistics were then
averaged over almost 35 time units. The main convergence criterion is the bulk velocity
Ub, that is, the volume-averaged mean streamwise velocity over the channel (normalized
by uτ). The bulk velocity Ub eventually converged to a value of 15.688 (meaning that the
bulk Reynolds number is Re ≈ 2981), compared to Ub = 15.70 in [4] and Ub = 15.73 in [46].
The corresponding values of the skin-friction drag coefficient (C f ), based on Ub, are: 0.00813
(present), 0.00811 [4], and 0.00808 [46]. The statistics given below at any distance Y from
the wall have been evaluated via spatial averaging over the corresponding X− Z plane.

• Mean velocity profile:

The distribution of the mean streamwise velocity (U) is displayed in Figure 6 as
a function of the normal distance (Y) from the lower wall. It is clear that the present
numerical results for U agree well with the reference results by Vreman and Kuerten [4]
and Kim et al. [44]. For instance, the value of the centerline velocity Uc is equal to 18.3,
compared to approximately 18.28 in [4] and 18.18 in [44]. The velocity profile is plotted in
wall coordinates in Figure 7-left; Y+ = Y Reτ . The behavior fits well with the linear relation
U = Y+ in the viscous sublayer (up to Y+ ≈ 5), while the log law, U = (1/κ) lnY+ + B, is
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satisfied for Y+ ' 40. Here, the von Kármán constant (κ) is 0.4, while a value of 5.5 was
chosen for the intercept of the logarithmic profile (B) to take into account the low Reynolds

number effect [44]. The behavior of the log-law diagnose function, defined as Ξ = Y+ ∂U
∂Y+

,
is shown in Figure 7-right. The constancy of Ξ indicates, by definition, a typical logarithmic
behavior of U, where the constant value Ξ ≈ 2.5 corresponds to the coefficient 1/κ. It is
clear that the upper validity limit of the log-law is Y+ ≈ 125.

Figure 6. Mean velocity profile in global coordinates for the smooth channel case.

Figure 7. Behavior of the mean streamwise velocity, U, in different regions of the turbulent boundary
layer: (left) mean velocity profile in wall coordinates; (right) the log-law diagnose function, Ξ. Results
are only displayed over the lower half of the smooth channel.

• Turbulence statistics:

It is useful for both validation and physical interpretation purposes to analyze the
primary fluctuations (U′, V′, W ′), representing the instantaneous deviations of the velocity
components from their time-averaged values; for example, U′ = U −U. The intensity of
the fluctuations can be described by the root-mean-square (rms) values (Urms, Vrms, Wrms),

where Urms = U′U′
1/2

, for example. Another measure is the intensity of the fluctuations

(Iu =
Urms

U
, Iv =

Vrms

U
, Iw =

Wrms

U
). The behaviors of both estimates (rms, I) are show in

wall coordinates in Figure 8, together with reference data from [4,44]; the accuracy of the
present results is confirmed.
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Figure 8. Estimates of the primary fluctuations for the smooth channel case: (left) root-mean-squares
of the turbulent fluctuations in velocity components; (right) turbulence intensities. The reference
results of the RMS fluctuations by Vreman and Kuerten [4] (square markers) and the values of the
turbulence intensities by Kim et al. [44] (filled circles) are also plotted for comparison.

The Turbulent Kinetic Energy (TKE) is defined as k =
1
2
(U′U′ + V′V′ + W ′W ′). The

dissipation terms in the transport equations of U′U′, V′V′, W ′W ′ are plotted in wall coordi-
nates in Figure 9-left. They are defined, in dimensionless forms, as follows:

(εu, εv, εw) =
2

Re2
τ

(
|∇U′|2, |∇V′|2, |∇W ′|2 ), (32)

with the gradients of the primary fluctuations calculated using the dimensionless space
variables (X, Y, Z). The total dissipation and production rates of TKE are approximately
balanced within the log-law region, as can be realized from Figure 9-right. They are defined
in dimensionless forms as:

εT =
1
2
(εu + εv + εw), (33)

PT = − 1
Reτ

U′i U
′
j

∂Ui
∂Xj

. (34)

Figure 9. Components of turbulent dissipation (left) and production and dissipation rates of TKE
(right). Present trends are plotted with solid lines. Reference results by Vreman and Kuerten [4] and
by Mansour et al. [1] are used for validation in the left and right frames, respectively.

One of the observables most focused upon in wall turbulence is the Reynolds stress ten-
sor, τR, and in particular the component τR

xy is the most relevant to skin-friction drag. The
total stress is defined as the sum of viscous and Reynolds stresses, that is, τxy = τV

xy + τR
xy.
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With ρu2
τ as scale, the dimensionless stresses are given by τV

xy =
1

Reτ

∂U
∂Y

and τR
xy = −U′V′.

The good agreement between the present results and those by Kim et al. [48], shown in
Figure 10, further attests to the validity of the finite volume model employed here, and the
suitability of the numerical setup.

Figure 10. Distributions of X−Y shear stresses over the full height of the smooth channel: (blue) vis-
cous stress; (red) Reynolds stress; (black) total stress. The present results are shown with solid/dashed
lines, while reference results by Kim et al. [44] are plotted with filled circles.

3.2. Turbulent Flow over Porous Substrates
3.2.1. Basic Definitions and Implementation of the Effective Conditions

The turbulent channel flow over porous substrates of different microstructures is
macroscopically analyzed in this section, with the aid of the homogenization model de-
scribed in Section 2. The numerical procedure, including the spatial and the temporal
discretization schemes and the X−momentum forcing term, is identical to the setup of
the smooth channel case, described in Section 3.1.1. The only modification is that the
lower boundary (at Y = 0) now mimics a slip, permeable wall. This can be achieved
by implementing the effective boundary conditions for the three velocity components
given in Equations (25)–(27), with model coefficients corresponding to the specific topology
and orientation of the solid inclusions sketched in Figure 11. Focus is on the evaluation
and the further interpretation of the favorable/adverse changes in the skin-friction drag,
related to the presence of different anisotropic permeable substrates. It is important to
highlight that the geometries of the inclusions described in Figure 11 are intentionally
chosen to meet this objective. The inclusions considered are: (i) transverse, Z-aligned,
cylinders (configuration: TC); (ii) longitudinal, X-aligned, cylinders (configuration: LC);
(iii) longitudinal cylindrical elements modified with four longitudinal protrusions in the
shape of parallelepipeds, equally spaced along the circumference (configuration: LM). The
dimensions of the solid inclusion within the unit cell are chosen to yield the same porosity,
θ = 0.5. The model coefficients for substrate LC have been estimated earlier; they are given
in (24). The coefficients for the case of spanwise-aligned cylinders (TC) are directly available
from the LC case, by simply switching the streamwise and spanwise coordinates, i.e.,

λx = 0.04513, λz = 0.06883, Kit f
xy = 0.002220, Kit f

zy = 0.005561, (35)

Kxx = 0.001828, Kyy = 0.001828, Kzz = 0.006966.
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Conversely, configuration LM requires the numerical solution of the ad hoc problems given
in Section 2.2 for this specific geometry: the dimensionless upscaled coefficients are found
to be

λx = 0.1130, λz = 0.0590, Kit f
xy = 0.01213, Kit f

zy = 0.00411, (36)

Kxx = 0.00762, Kyy = 0.000121, Kzz = 0.000121.

It should be noted that by modifying the longitudinal geometry with the addition of four
thin fins we have been able to increase the difference between λx and λz; in light of literature
results (presented in Section 1) this is expected to improve the drag-reducing effect of the
porous layer.

The last parameter which needs to be set is ε = l/H. Two values were tested:
(i) ε = 0.05, with the substrates indicated as TC5, LC5, LM5; (ii) ε = 0.10, with the substrates
denoted by TC10, LC10, LM10. For later discussion, it is also useful to define the model
coefficients in wall units, with the slip coefficients (λ) multiplied by (εReτ) and the per-
meabilities (Kin f ,K) multiplied by (εReτ)2; the numerical values of these parameters are
given in Table 2, for all the substrates defined.

Table 2. Values of the macroscopic coefficients for the different configurations of the porous substrate,
given in wall units with Reτ ≈ 190.

Macroscopic Parameters
Configurations

TC5 LC5 LM5 TC10 LC10 LM10

λ+
x 0.4287 0.6539 1.0735 0.8574 1.3078 2.1470

λ+
z 0.6539 0.4287 0.5605 1.3078 0.8574 1.1210

Kin f ,+
xy 0.2004 0.5018 1.0947 0.8016 2.0072 4.3788

Kin f ,+
zy 0.5018 0.2004 0.3709 2.0072 0.8016 1.4836

K+
xx 0.1650 0.6287 0.6877 0.6600 2.5148 2.7508

K+
yy 0.1650 0.1650 0.0109 0.6600 0.6600 0.0436

K+
zz 0.6287 0.1650 0.0109 2.5148 0.6600 0.0436

Numerically enforcing the effective boundary conditions (25)–(27) is a delicate task

for several reasons. First, the pressure-gradient term
∂P
∂X

∣∣∣∣
Y=0

, present at second order

in ε in the definition of the streamwise slip velocity, may be decomposed into a mean

term and a fluctuating part. The mean pressure gradient
∂P
∂X

∣∣∣∣
Y=0

corresponds to the

X−momentum volumetric source term (M = 1), which forces fluid motion through the
channel. Second, imposing a wall-normal, transpiration, velocity component may induce
numerical instabilities, associated with an imbalance between blowing and suction at
the Y = 0 dividing surface. Hence, it is useful to define an ad hoc function, as part of
the numerical code, to impose that the surface-averaged transpiration velocity at Y = 0
vanishes at each time step. Furthermore, we have found it to be advantageous to seek an
explicit expression of the transpiration-velocity condition (Equation (26)), by writing

∂S12

∂X

∣∣∣∣
Y=0

=
1

ελx

∂U
∂X

∣∣∣∣
Y=0

+O(ε), ∂S32

∂Z

∣∣∣∣
Y=0

=
1

ελz

∂W
∂Z

∣∣∣∣
Y=0

+O(ε). (37)

The expressions above are immediately available from Equations (25) and (27). Finally,

mass conservation can be used to replace
(

∂V
∂Y

)
by
(
−∂U

∂X
− ∂W

∂Z

)
in the definition of the

outer-stress component S22 in Equation (26).
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Figure 11. Sketch of the macroscale problems. The computational domain is displayed in the top
panel, with the effective velocity boundary conditions imposed at the plane Y = 0. The usage of the
effective conditions permits to not solve for the flow in the porous substrate. In the bottom frame, the
configurations of the porous media under study are indicated, with the dimensions shown on a 1× 1
unit cell. The dimensions of the inclusions yield a porosity θ = 0.5.

3.2.2. Results for ε = 0.05

Detailed results for the substrates TC5, LC5 and LM5 are considered here; they will
provide insight into the main parameters which control skin-friction drag.

The quantities that we intend to discuss in detail are first defined and summarized
here. The flow under study is bounded by a lower permeable wall (at Y = 0) and an upper
smooth wall (at Y = 2); hence, two different values of the total shear stress may be defined,

i.e., τ0 and τ2, respectively. The ratio between the two stresses is SR =
τ0

τ2
. The total shear

stresses at the walls are linked to the X−momentum source term, M, on account of the
balance of forces in the X−direction; that is, τ0 + τ2 = 2 M. Here, a major parameter in the

following discussions is defined, the source-term-based stress: τM = M =
τ0 + τ2

2
. In the

present case it is τM = 1 for all simulations and the friction Reynolds number, based on τM,
is equal to 190, as in the smooth channel case.

The drag coefficient is also based on τM and the bulk velocity Ub, as follows:

C f =
2 τM

ρ U2
b

. (38)
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The percentage deviation of the drag coefficient from the reference value of the smooth
channel is defined as:

∆C f % =
C f ,porous − C f , smooth

C f , smooth
× 100(%), (39)

with a negative value of ∆C f % which indicates drag reduction (implying an increase in the
flow rate), and vice versa when ∆C f % is positive.

The numerical values of SR and ∆C f %, for the different configurations, are presented
in Table 3. The results show that drag reduction is achieved by the configurations LC5
and LM5, which are characterized by preferential orientation of the solid inclusions in
the streamwise direction, with K+

xx > K+
zz, λ+

x > λ+
z and Kin f ,+

xy > Kin f ,+
zy (cf. Table 2).

This concept is well established in the literature of drag reduction by small surface ma-
nipulations [26,27,31], in particular for porous substrates wall-normal permeability K+

yy
too small to initiate a Kelvin–Helmholtz instability in the turbulent boundary layer. The
drag reduction is more pronounced for the substrate LM5, a fact probably correlated to the
accrued difference between λ+

x and λ+
z , as anticipated. It is also clear that drag reduction is

associated with values of SR lower than 1, which means that the total shear stress at the
permeable wall (Y = 0) is smaller than its value at the upper smooth surface.

Table 3. Values of the total shear stress ratio between the lower and the upper walls (SR =
τ0
τ2

) and of

the percentage change in the skin-friction drag coefficient (∆C f %).

Quantities
Configurations

Smooth TC5 LC5 LM5

SR 1 1.036 0.976 0.961

∆C f % 0 +2.423% −2.157% −3.681%

A summary of interfacial and peak values of a few observables is provided in Table 4
for all configurations considered so far. These results will be later referred to while dis-
cussing and comparing the behaviors of the different flow cases.

• Mean velocity profiles.

The profiles of the mean streamwise velocity (U) across the channel are displayed in
Figure 12. The behavior of the slip velocity at the fictitious Y = 0 wall is highlighted in
the lower frame of the figure, and compared to the solution obtained by enforcing no-slip
conditions at both surfaces. A preliminary estimation of the value of the slip velocity can be
obtained from the first-order term in the effective boundary condition of U, Equation (25),
which may be recast in terms of the mean velocity (U) and the wall distance in viscous
units (Y+) as follows:

U
∣∣
Y=0 ≈ λ+

x
∂U

∂Y+

∣∣∣∣
Y=0

. (40)

With the velocity gradient
∂U

∂Y+

∣∣∣∣
Y=0

equal to 1, Equation (40) simplifies to a Dirichlet

boundary condition, i.e.,
U
∣∣
Y=0 ≈ λ+

x . (41)

A comparison between the interfacial values of U, in Table 4, and the corresponding values
of λ+

x , in Table 2, confirms the approximate result of Equation (41), with minor deviations
which can be attributed to second-order terms and to the fact that the shear velocity used as
scale is calculated based on the momentum source term (M) and not on τ0 (cf. Section 3.2.2).
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Table 4. Interfacial and peak values of the mean velocity and of turbulence-characterizing parameters
for different configurations of the porous medium (θ = 0.5 and ε = 0.05). The peak values are those
closer to the permeable surface. For reference, also the results for a smooth channel are given.

Quantity
Interfacial Values (Y = 0) Peak Values

Smooth TC5 LC5 LM5 Smooth TC5 LC5 LM5

U 0 0.4439 0.6605 1.0719 18.164 17.959 18.397 18.446

Urms 0 0.1829 0.2388 0.3643 2.6359 2.6377 2.6102 2.5668

Vrms 0 0.0135 0.0078 0.0082 0.8292 0.8427 0.8184 0.8097

Wrms 0 0.1462 0.0876 0.1152 1.0692 1.0879 1.0529 1.0598

τR
xy 0 0.00081 0.00046 0.00064 0.7231 0.7521 0.7069 0.7023

Iu 0.3660 0.4120 0.3615 0.3399 0.3660 0.4120 0.3615 0.3399

Iw 0.2000 0.3293 0.1326 0.1075 0.2000 0.3293 0.1485 0.1297

εT 0.1680 0.2055 0.1567 0.1393 0.1680 0.2055 0.1567 0.1393

The mean velocity profiles are plotted in wall coordinates in Figure 13, up to the
centerline of the channel (Y+ = Reτ ≈ 193). A better vision of the boundary layer
characteristics through the logarithmic region is available. The behavior of the velocity
profiles follows the classical theory of near-wall turbulence, according to which the surface
alterations only affect the intercept of the logarithmic profile, while the von Kármán
constant (κ ≈ 0.4) remains constant [27,49]. Hence, a general expression of the velocity
distribution in the log-law region may be written as follows:

U =
1
κ

lnY+ + B + ∆U, (42)

with B the intercept in the case of a smooth wall, and ∆U the shift of the velocity profile from
the corresponding smooth channel behavior. The variations in ∆U across the boundary
layers over different substrates are shown in the right frame of Figure 13. As expected, the
logarithmic regions (30 ≤ Y+ ≤ 120) are characterized by approximately constant values of
∆U (corresponding to parallel profiles of U); which can be directly linked to the deviations
of the skin-friction drag coefficients from the smooth channel case; a positive value of ∆U
implies drag reduction (as for substrates LC5 and LM5), and vice versa for substrate TC5.

• Turbulence statistics.

A better understanding of the drag reduction mechanism is sought by the analysis of
turbulence statistics near the permeable walls. The definitions of all the parameters under
consideration here are the same as in Section 3.1.2.
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Figure 12. Mean streamwise velocity profiles plotted from the virtual interface between the channel
flow and the porous bed (Y = 0) to the upper no-slip wall (Y = 2). The cases shown are: (solid black
line) smooth channel; (dotted blue line) substrate TC5; (dashed green line) substrate LC5; (red line
with markers) substrate LM5.

Figure 13. Mean velocity profiles next to the permeable walls: (left) velocity profiles in wall coordi-
nates up to the centerline of the channel; (right) deviations of the mean velocity profiles over different
substrates, from the corresponding smooth channel profile. The symbols are identical to those used
in Figure 12.

The root-mean-squares of the velocity fluctuations are plotted in Figure 14 near the
different permeable walls. A wall-normal range 0 ≤ Y+ ≤ 75 is used to display the
distributions of Urms, Vrms and Wrms, where significant features and deviations from the
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no-slip case are highlighted. In particular, the values of the RMS fluctuations at the
interface with the porous substrates deviate from zero, as quantified in Table 4, owing to
the slip/transpiration boundary in Y = 0. The interfacial values of Urms and Wrms appear
to be directly correlated to λ+

x and λ+
z , respectively (compare the corresponding values in

Tables 2 and 4). Proceeding towards the logarithmic region, the deviation of Urms, Vrms and
Wrms from the smooth channel behavior yields some insight onto the ability of the substrates
LC5 and LM5 to attenuate turbulence in the near-wall layer. This might explain the drag
reduction caused by these longitudinal configurations, in comparison to the adverse effect
of the spanwise-aligned inclusions, substrate TC5. This can be confirmed by comparing the
values of the percentage changes in skin-friction drag (Table 3) and the peak values of the
rms velocity fluctuations (Table 4). The preceding concept applies also to the distributions
of the Reynolds shear stress τR

xy; cf. Figure 15. An increase in the peak value of τR
xy by

about 4% is realized for the substrate TC5; this implies destabilization of the turbulent
boundary layer overlying the transverse cylinders, which adversely affects skin-friction
drag. Conversely, the production of Reynolds stresses in the logarithmic region is slightly
mitigated by the configurations LC5 and LM5. It should be noted that the values of the
Reynolds shear stress at the permeable walls (cf. Table 4) are too small to be graphically
captured; this may be ascribed to the low values of the wall-normal permeability, K+

yy.

Figure 14. Root-mean-squares of the primary fluctuations over different permeable walls. Close-ups
of the profiles in the neighborhood of the permeable wall and in the logarithmic layer are provided.
The cases shown are: (solid black line) smooth channel; (dotted blue line) substrate TC5; (dashed
green line) substrate LC5; (red line with markers) substrate LM5.
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Figure 15. Distribution of the Reynolds stress, τR
xy, next to different permeable walls, plotted up to

the centerline of the channel using the same symbols as in Figure 14.

The distributions of the turbulence intensities Iu and Iw are shown in Figure 16 in
the neighborhood of the permeable walls, i.e., up to Y+ ≈ 9. Interestingly, the behaviors
of these quantities, even at the permeable wall and within the adjacent viscous sublayer,
are strongly linked to the corresponding changes in the skin-friction drag. The same
concept applies to the turbulence dissipation (εT), displayed in Figure 17. For instance, the
drag increase in the case of the substrate TC5 is associated with increase in the interfacial
values (at Y = 0) of Iu, Iw and εT by about 13%, 60% and 40%, respectively, whereas these
parameters decrease by about 7%, 45% and 17% for the substrate LM5. This should be
compared to the RMS of the velocity fluctuations, which proved to be representative of
changes in the skin-friction drag coefficient only in the log-law region.

Figure 16. Turbulence intensities (Iu and Iw) near the permeable walls. In the right frames, the
percentage deviations of the intensities from the reference smooth channel values are displayed.
Symbols are identical to those in Figure 14.
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Figure 17. Distributions of the turbulent dissipation near the permeable wall for different configura-
tions of the porous substrate, with the percentage deviations from the reference smooth surface case
displayed in the right frame. Refer to Figure 14 for the definition of the symbols used.

3.2.3. Results for ε = 0.1

The turbulent channel flow (Reτ ≈ 190) over permeable walls of periodicity (ε) equal
to 0.1 is analyzed in this section; the porous substrates TC10 and LM10 are specifically
considered. In principle, by increasing the value of ε (with respect to the case ε = 0.05
examined in Section 3.2.2), the differences between the slip lengths λ+

x and λ+
z are more sig-

nificant (cf. Table 2), and the adverse/favorable changes in the skin-friction drag coefficient
are expected to be more pronounced. This concept is confirmed by the homogenization-
based numerical results of the percentage change in the drag coefficient (∆C f %), presented
in Table 5. As can be realized, the substrate LM10, with λ+

x > λ+
z , allows for approximately

5% reduction in the skin-friction coefficient, whereas the drag coefficient increases by
almost 9% in the case of the substrate TC10, for which λ+

z > λ+
x . The preceding values

should be compared to a reduction by 3.68% and an increase by 2.42% with the substrates
LM5 and TC5, respectively. It is clear that the increase in the skin-friction drag coefficient
with substrate TC10 is associated to a significant increase in the shear stress ratio (SR), in
the sense that the total shear stress at the lower permeable wall (τ0) is much larger than its
value at the upper smooth wall (τ2).

Table 5. Values of the total shear stress ratio between the lower and the upper walls (SR =
τ0
τ2

)

and the percentage change in the skin-friction drag coefficient (∆C f %), with the porous substrates
characterized by ε = 0.1.

Quantities
Configurations

Smooth TC10 LM10

SR 1 1.150 0.953

∆C f % 0 +8.976% −4.934%

The interfacial and the peak values of different quantities of interest over the substrates
TC10 and LM10 are summarized in Table 6; they may be compared to the values of the
same quantities with ε = 0.05, given in Table 4. The correspondence between the values
of the mean streamwise velocity (U) at the interface (Y = 0) and the values of λ+

x , given
in Table 2, are still in line with the approximate relation (41), taking into account that, due
to the increase in ε, the second-order terms in the effective boundary condition for U are
now more pronounced. The effect of the O(ε2) terms is more apparent in the fluctuations
of the transpiration velocity which is, by definition, a second-order effective boundary
condition (cf. Equation (26)); the values of Vrms, given in Table 6, are more than four times
the corresponding values found at ε = 0.05.
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Table 6. Interfacial and peak values of the mean velocity and different turbulence-characterizing
parameters, for two different configurations of the porous medium (with ε = 0.1).

Quantity
Interfacial Values (Y = 0) Peak Values

Smooth TC10 LM10 Smooth TC10 LM10

U 0 0.9404 2.1573 18.164 17.5436 18.5930

Urms 0 0.4615 0.7129 2.6359 2.6106 2.5090

Vrms 0 0.0589 0.0360 0.8292 0.8842 0.8044

Wrms 0 0.3563 0.2667 1.0692 1.1615 1.0688

τR
xy 0 0.0108 0.0053 0.7231 0.7960 0.7053

Iu 0.3660 0.4900 0.3303 0.3660 0.4900 0.3303

Iw 0.2000 0.3691 0.1238 0.2000 0.3691 0.1287

εT 0.1680 0.3168 0.1493 0.1680 0.3168 0.1493

The profiles of the mean streamwise velocity (U) over the permeable substrates TC10
and LM10 are displayed in Figure 18. It is clear that the positive/negative deviations (∆U)
in the intercept of the logarithmic profile (cf. equation (42)) are accentuated with respect
to the corresponding cases with ε = 0.05 (cf. Figure 13); this goes along with the larger
changes in the drag coefficient at ε = 0.1. In agreement with the previous discussion in
Section 3.2.2, the turbulence intensities, presented in Figure 19, provide a fair clarification
of the levels of disturbances in the near-wall layer, which can justify the adverse/favorable
changes in skin friction coefficient for substrates TC10 and LM10, respectively.

Figure 18. Mean streamwise velocity profiles plotted in global coordinates across the channel (top)
and in wall coordinates over the permeable wall (bottom left), with the deviations from the smooth
channel case plotted in the bottom right frame. The cases presented are: (solid black line) smooth
channel; (dotted blue line) substrate TC10; (red line with markers) substrate LM10.
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Figure 19. Turbulence intensities (Iu and Iw) near the permeable walls. The percentage deviations of
the intensities from the reference smooth channel values are plotted in the right frames. Symbols are
identical to those used in Figure 18.

4. Conclusions

The high skin-friction drag characterizing wall-bounded turbulent flows adversely
affects the efficiency of fluid transportation systems. It is thus important to develop
effective drag reduction strategies, e.g., properly engineered passive flow control sur-
faces/substrates. In the present work, turbulent channel flows over transversely isotropic
permeable beds of different types were numerically studied, and the consequent favor-
able/adverse changes in the skin-friction drag coefficient were monitored and described by
analyzing turbulence statistics.

A multiscale homogenization approach was introduced to avoid the numerical com-
plexity and the expensive mesh requirements of a full resolution of the flow within the
porous media. Expressions for the effective boundary conditions of the three velocity compo-
nents were sought at a fictitious interface between the channel flow and the porous bed, up

to second-order accuracy in terms of a small parameter ε =
l (porous pattern periodicity)

H (half channel height)
.

The upscaled coefficients appearing in the definition of the effective boundary conditions,
i.e., the slip lengths (λx, λz), the medium permeability in the wall-normal direction (Kyy)

and the interfacial permeabilities (Kin f
xy ,Kin f

zy ), were numerically calculated for three mi-
crostructures of the porous substrate. In particular, the microstructures considered were:
(TC) transverse, Z-aligned, plain cylinders; (LC) longitudinal, X-aligned plain cylinders;
(LM) longitudinal, X-aligned, cylinders modified by the addition of four fins on the circum-
ference, especially designed to amplify the quantity (λx − λz) while reducing the medium
permeability, Kyy.

Direct numerical simulations of the macroscale problem above the virtual interface
with the different porous beds have been conducted, employing the finite volume method
with the Hybrid MUSCL 3rd-order/central-differencing discretization scheme, initially
validated on the flow through a smooth channel. A value of ε = 0.05 was first employed,
in order to focus on relatively small surface protrusions; the flow over the substrates TC5,
LC5 and LM5 was numerically studied, and the turbulence statistics were analyzed in
detail. Secondly, the value of ε was increased to 0.10 for the substrates TC10, LM10, and the
consequent changes in the skin-friction drag coefficient and other flow metrics of interest
were examined. Clearly, the gauge factor ε cannot be increased too much for the asymptotic
expansion to remain valid. The range of validity of the approach, in terms of acceptable
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values of ε, will be investigated in future work. The major findings of the present study are
summarized below:

(i) The permeable substrates with preferential slip in the streamwise direction (λ+
x > λ+

z ),
i.e., those designed with longitudinal (either plain or modified) cylinders, are able to
reduce skin-friction drag. This conclusion should hold up to some critical value of Kyy
at which large-scale instabilities have their onset in the near-wall layer [31].

(ii) The adverse/favorable changes in the skin-friction drag coefficient are more pro-
nounced for the substrates with ε = 0.1. The drag coefficient increases by almost
9% with the substrate TC10, while about 5% drag reduction is obtained with the
substrate LM10.

(iii) The analysis of the turbulence intensities Iu and Iw provides a meaningful picture of
the levels of disturbances in the neighborhood of the permeable walls; such intensi-
ties can be used, together with the streamwise slip velocity, to interpret changes in
skin-friction drag.

(iv) The implementation of the homogenization approach significantly reduces the numer-
ical cost of direct numerical simulations over porous layers, since only the motion in
the free-fluid region needs to be resolved. With the dimensions chosen for the domain,
the total number of grid points is below 2× 106, while the mesh requirements for
a full feature-resolving simulation (including the porous substrate) may exceed 108

(cf. Wang et al. [24]).

The present approximate framework needs to be properly validated against feature-
resolving simulations which include the permeable medium, in order to provide full
confidence in the model developed. This task is currently underway and preliminary results
are encouraging. Once this validation phase is terminated, the homogenization model
developed will be employed in a large-scale optimization study: different microstructures
of the porous substrate will be examined in pursuit of the optimal topology, size and
arrangement of the solid grains, capable to yield the largest skin-friction reduction. It
will also be of interest to compare the homogenized results for porous substrates with
inline and staggered arrangements of grains; this is the case since the configuration of
randomly arranged inclusions might be expected to lie in between these two limiting cases,
as observed by Naqvi and Bottaro [42].
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