24 research outputs found

    Unmatched Level of Molecular Convergence among Deeply Divergent Complex Multicellular Fungi

    Get PDF
    Convergent evolution is pervasive in nature, but it is poorly understood how various constraints and natural selection limit the diversity of evolvable phenotypes. Here, we analyze the transcriptome across fruiting body development to understand the independent evolution of complex multicellularity in the two largest clades of fungi-the Agarico- and Pezizomycotina. Despite >650 My of divergence between these clades, we find that very similar sets of genes have convergently been co-opted for complex multicellularity, followed by expansions of their gene families by duplications. Over 82% of shared multicellularity-related gene families were expanding in both clades, indicating a high prevalence of convergence also at the gene family level. This convergence is coupled with a rich inferred repertoire of multicellularityrelated genes in the most recent common ancestor of the Agarico- and Pezizomycotina, consistent with the hypothesis that the coding capacity of ancestral fungal genomes might have promoted the repeated evolution of complex multicellularity. We interpret this repertoire as an indication of evolutionary predisposition of fungal ancestors for evolving complex multicellular fruiting bodies. Our work suggests that evolutionary convergence may happen not only when organisms are closely related or are under similar selection pressures, but also when ancestral genomic repertoires render certain evolutionary trajectories more likely than others, even across large phylogenetic distances

    Comparative genomics reveals the origin of fungal hyphae and multicellularity

    Get PDF
    Hyphae represent a hallmark structure of multicellular fungi. The evolutionary origins of hyphae and of the underlying genes are, however, hardly known. By systematically analyzing 72 complete genomes, we here show that hyphae evolved early in fungal evolution probably via diverse genetic changes, including co-option and exaptation of ancient eukaryotic (e.g. phagocytosis-related) genes, the origin of new gene families, gene duplications and alterations of gene structure, among others. Contrary to most multicellular lineages, the origin of filamentous fungi did not correlate with expansions of kinases, receptors or adhesive proteins. Co-option was probably the dominant mechanism for recruiting genes for hypha morphogenesis, while gene duplication was apparently less prevalent, except in transcriptional regulators and cell wall - related genes. We identified 414 novel gene families that show correlated evolution with hyphae and that may have contributed to its evolution. Our results suggest that hyphae represent a unique multicellular organization that evolved by limited fungal-specific innovations and gene duplication but pervasive co-option and modification of ancient eukaryotic functions

    Gene age shapes the transcriptional landscape of sexual morphogenesis in mushroom forming fungi (Agaricomycetes)

    Get PDF
    Multicellularity has been one of the most important innovations in the history of life. The role of regulatory evolution in driving transitions to multicellularity is being increasingly recognized; however, patterns and drivers of transcriptome evolution are poorly known in many clades. We here reveal that allele-specific expression, natural antisense transcripts and developmental gene expression, but not RNA editing or a developmental hourglass act in concert to shape the transcriptome of complex multicellular fruiting bodies of fungi. We find that transcriptional patterns of genes are strongly predicted by their evolutionary age. Young genes showed more expression variation both in time and space, possibly because of weaker evolutionary constraint, calling for partially non-adaptive interpretations of evolutionary changes in the transcriptome of multicellular fungi. Gene age also correlated with function, allowing us to separate fruiting body gene expression related to simple sexual development from that potentially underlying complex morphogenesis. Our study highlighted a transcriptional complexity that provides multiple speeds for transcriptome evolution, but also that constraints associated with gene age shape transcriptomic patterns during transitions to complex multicellularity in fungi.Competing Interest StatementThe authors have declared no competing interest

    Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes

    Get PDF
    Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for similar to 10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi

    Integration Opportunities of Power-to-Gas and Internet-of-Things Technical Advancements: A Systematic Literature Review

    No full text
    As renewable electricity integration generates grid-balancing challenges for network operators, new ways of grid resilience receive significant attention from the energy research community. Power-to-gas (P2G) applications could produce and use green hydrogen. Thus, they enable the integration of more renewable energy into the energy system. Meanwhile, Internet-of-things (IoT) solutions could optimize renewable energy applications in decentralized systems. Despite the strategic importance of both technologies in renewable-rich grid developments, opportunities for P2G advancements based on IoT and related solutions have not come to the forefront of renewable energy research. To fill in this research gap, this study presents a hybrid (thematic and critical) systematic literature review to explore how strategic co-specialization opportunities appear in recent publications. Findings suggest that P2G and IoT could be fundamentally linked within the proposed frameworks of multi-energy systems and energy internet, but further empirical research is needed regarding their operative and strategic integration (e.g., cost reduction, risk management and policy incentives)
    corecore