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Abstract Multicellularity has been one of the most important innovations in the history of life. 
The role of gene regulatory changes in driving transitions to multicellularity is being increasingly 
recognized; however, factors influencing gene expression patterns are poorly known in many clades. 
Here, we compared the developmental transcriptomes of complex multicellular fruiting bodies of 
eight Agaricomycetes and Cryptococcus neoformans, a closely related human pathogen with a 
simple morphology. In-depth analysis in Pleurotus ostreatus revealed that allele-specific expression, 
natural antisense transcripts, and developmental gene expression, but not RNA editing or a ‘devel-
opmental hourglass,’ act in concert to shape its transcriptome during fruiting body development. 
We found that transcriptional patterns of genes strongly depend on their evolutionary ages. Young 
genes showed more developmental and allele-specific expression variation, possibly because of 
weaker evolutionary constraint, suggestive of nonadaptive expression variance in fruiting bodies. 
These results prompted us to define a set of conserved genes specifically regulated only during 
complex morphogenesis by excluding young genes and accounting for deeply conserved ones 
shared with species showing simple sexual development. Analysis of the resulting gene set revealed 
evolutionary and functional associations with complex multicellularity, which allowed us to speculate 
they are involved in complex multicellular morphogenesis of mushroom fruiting bodies.

Editor's evaluation
This study sought to systematically identify key aspects of the transcriptional landscape in fungi that 
exhibit complex multicellularity (CM), associated with fruiting bodies. The authors examined a series 
of parameters of expression signatures, concluding that the best predictor of a gene behavior in the 
CM transcriptome was evolutionary age. Thus, the expression pattern of fruiting bodies showed a 
distinct gene age-related stratification, where it was possible to sort out genes related to general 
sexual processes from those likely linked to morphogenetic aspects of the CM fruiting bodies. 
Notably, these results do not support a developmental hourglass concept, which is the rather 
predominant hypothesis in metazoans, including some analysis in fungi.

RESEARCH ARTICLE

*For correspondence: 
lnagy@fungenomelab.com

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 21

Preprinted: 06 June 2021
Received: 17 June 2021
Accepted: 11 February 2022
Published: 14 February 2022

Reviewing Editor: Luis F 
Larrondo, Pontificia Universidad 
Católica de Chile, Chile

‍ ‍ Copyright Merényi et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.71348
mailto:lnagy@fungenomelab.com
https://doi.org/10.1101/2021.06.04.447176
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology | Evolutionary Biology

Merényi et al. eLife 2022;11:e71348. DOI: https://doi.org/10.7554/eLife.71348 � 2 of 42

Introduction
The emergence of multicellularity has been one of the most influential transitions in evolution (Knoll, 
2011; Smith and Szathmary, 1995). However, while simple multicellular aggregations evolved several 
times and evidence is accumulating that these transitions may not have had as many genetic obstacles 
as originally thought (Abedin and King, 2008; Kiss et al., 2019; Nagy et al., 2018; Sebé-Pedrós 
et al., 2017), origins of complex multicellularity (CM) seem to be rare evolutionary events. Simple 
multicellularity refers to cell aggregations, colonies, or filaments, whereas CM comprises three-
dimensional (3D) organisms in which not all cells are in direct contact with the environment. CM prob-
ably required the evolution of mechanisms for transport, cell adhesion, and complex developmental 
programs (Knoll, 2011). Diverse studies suggest that, besides the changes in gene content or protein 
sequence, the evolution of gene expression and genome regulation is also important in the transition 
to CM (King et al., 2003; Merényi et al., 2020; Sebé-Pedrós et al., 2018).

Uniquely across life on Earth, fungi show evidence for multiple evolutionary origins of CM (Nagy, 
2018; Nguyen et al., 2017). CM in fungi, as defined by Knoll, 2011, refers to fruiting bodies and 
some other 3D structures (e.g., sclerotia, ectomycorrhizae; see Nagy et al., 2018). CM in fungi is 
restricted to certain stages of the life cycle and starts by the transition from simple hyphal growth 
to 3D organization, for example, during the development of sexual fruiting bodies. This allows 
real-time transcriptomic readouts of changes associated with transitions in complexity level, which 
make fungi an ideal model system to investigate CM. Fungi reach the highest level of multicel-
lular complexity in fruiting bodies of Agaricomycetes (Kües and Navarro-González, 2015; Nagy, 
2018), which includes most industrially cultivated edible and medicinal mushrooms. CM fruiting 
bodies in the Agaricomycetes have been widely studied by transcriptomic approaches; however, 
the interpretation of transcriptomes has been complicated by the lack of an understanding of 
the general principles of transcriptome evolution. This has, among other factors, impeded the 
definition of core CM- and development-related genes and pathways and thus reaching a general 
synthesis on the genetics of CM in the Agaricomycetes. Recent studies of fruiting body develop-
ment reported species-specific and conserved genes (Krizsán et al., 2019; Nguyen et al., 2017), 
natural antisense transcripts (NATs) (Muraguchi et al., 2015; Ohm et al., 2010; Shao et al., 2017), 
allele-specific expression (ASE) (Gehrmann et al., 2018), RNA editing (Zhu et al., 2014), small 
RNA (Lau et al., 2018), alternative splicing (Krizsán et al., 2019), chromatin remodeling (Vonk 
and Ohm, 2021), as well as developmental hourglass (Cheng et al., 2015); however, how wide-
spread these are during and how significant their contributions to fruiting body development are 
not known.

Similarly, several genes and cellular processes have been identified in agaricomycete fruiting 
bodies. Fruiting bodies are composite structures in which structural cell types enclose reproduc-
tive ones (basidia, meiospores) into a protective environment. Basidium and spore development are 
evolutionarily significantly older than CM fruiting bodies (Virágh et  al., 2021). The genes under-
lying basidium and spore development show up in developmental transcriptomes and, if not properly 
accounted for, can blur signals for real CM-related genes. Accordingly, while some hitherto identified 
genes can be linked to CM functions (e.g., defense of fruiting bodies; see Künzler, 2018), most 
fruiting body-expressed genes, including those related to cell wall remodeling (Liu et al., 2021), tran-
scriptional regulation, selective protein degradation (Krizsán et al., 2019), or complex secretomes 
(Almási et al., 2019), could relate either to CM or more general functions.

One of the main goals of this study was to systematically tease apart the components and driving 
forces of transcriptome evolution in a CM fungus. To this end, we examined NATs, ASE, and RNA 
editing in a well-resolved developmental transcriptome of Pleurotus ostreatus (oyster mushroom). 
We found that developmental expression and ASE of a gene strongly correlate with the gene’s evolu-
tionary age. Building on this observation, the second aim of this study was to identify conserved gene 
families whose expression patterns associate with CM in the Agaricomycetes. For this, we compared 
the transcriptomes of eight CM fungi and that of a species with simple sexual development (Crypto-
coccus neoformans). The gene age-related stratification of developmental transcriptomes was preva-
lent across all examined species; however, these were not compatible with developmental hourglass 
concept as postulated for animals. Nevertheless, the evolutionary conservation of gene expression 
allowed the separation of genes related to general sexual processes from ones restricted to CM 
species, providing functional hypotheses for genes potentially linked to sculpting CM fruiting bodies. 

https://doi.org/10.7554/eLife.71348
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Figure 1. Pylostratigraphic gene ages and phylogenetic relationships among the nine species analyzed in this 
study. Numbers in circles next to nodes represent gene ages used in phylostratigraphic analyses of Pleurotus 
ostreatus. Nodes are numbered from 1 to 20 from the root of the tree to the tip harboring P. ostreatus. The first 
emergence of complex multicellularity in this lineage is shown with red, according to Merényi et al., 2020. The 
scale bar represents 0.2 expected change per site. Fruiting bodies of P. ostreatus (upper) and Pterula gracilis 
(lower) are shown in the box. ‘Hym,’ Hymenochaetales.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Sampled developmental stages and tissue types during fruiting body formation of 
Pleurotus ostreatus.

Figure supplement 2. Sampled developmental stages during fruiting body formation of Pterula gracilis.

Figure supplement 3. Multidimensional scaling (MDS) plot based on the expression of genes in (a) Pleurotus 
ostreatus and (b) Pterula gracilis.

Figure supplement 4. The distribution of developmentally expressed genes in each species.

https://doi.org/10.7554/eLife.71348
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These data will help to understand both complex multicellular and simple sexual morphogenesis in 
Basidiomycete fungi.

Results and discussion
Overview of new RNA-seq data
We present highly resolved developmental transcriptome data for P. ostreatus (oyster mushroom), 
one of the three most widely cultured species worldwide (Zhu et al., 2019), as well as for Pterula 
gracilis, a closely related species with a simple fruiting body morphology (Figure 1). In P. ostreatus, we 
sampled six developmental stages and up to four tissue types within a stage, whereas in Pt. gracilis, 
tissues could not be separated; therefore, we sampled four developmental stages (Figure 1—figure 
supplements 1 and 2). Strand-specific RNA-seq yielded 15.9–34.0 million reads per sample (Dryad: 
Table D1). Multidimensional scaling of the normalized transcriptome data accurately identified sample 
groups with biological replicates being tightly positioned together (Figure 1—figure supplement 
3). Fruiting body samples were grouped in two main groups, the early (primordia and young fruiting 
bodies) and mature fruiting bodies, irrespective of the tissue types. For uniformity in downstream 
analyses, we reanalyzed data from former studies (Almási et al., 2019; Gehrmann et al., 2018; Ke 
et al., 2020; Krizsán et al., 2019; Liu et al., 2018; Sipos et al., 2017), yielding data for eight species 
in the order Agaricales (Figure 1), which comprises a single origin of complex fruiting body morphol-
ogies (Marisol et al., 2020; Varga et al., 2019). P. ostreatus and Pt. gracilis had 4294 and 474 devel-
opmentally expressed genes (≥4 fold change [FC]), respectively. Pleurotus has a similar number of 
developmentally expressed genes to those reported earlier for other mushroom-forming fungi, while 
Pt. gracilis has fewer, possibly due to its simple morphology (Almási et  al., 2019; Krizsán et  al., 
2019; Sipos et al., 2017; Figure 1—figure supplement 4). To validate the relevance of developmen-
tally expressed genes, we collected experimentally validated, fruiting-related genes from P. ostreatus 
and the model species Coprinopsis cinerea. For these genes, 92.3% of the P. ostreatus orthologs 
showed developmental expression (at FC > 2) in our dataset (Supplementary file 1), indicating that 
our approach captures CM-related genes with high sensitivity.

Developmentally expressed genes, natural antisense transcripts, and 
gene age distribution
Developmentally expressed genes displayed limited physical clustering in the genomes (Appendix 
1, Dryad: Table D2), which is different from some key genes involved in animal and plant pattern 
formation (Meyerowitz, 2002). Notably, some of the developmental gene ‘hotspots’ overlapped with 
putative natural product biosynthetic gene clusters, a well-known group of clustered genes in fungal 
genomes (Keller, 2019).

In addition to protein coding genes, strand-specific RNA-seq data allowed us to annotate NATs in 
the transcriptomes of P. ostreatus and Pt. gracilis (Appendix 2). NATs were abundant in both species 
(2043 and 763 in P. ostreatus and Pt. gracilis, respectively), consistent with a previous report (Ohm 
et  al., 2010) and showed dynamic developmental expression. However, they showed very little 
conservation across species, which potentially stems from fast evolution and/or recent origins. It has 
been proposed that NATs can arise from random promoters as transcriptional noise (Lloréns-Rico 
et al., 2016), a possibility that may be true for several or most, but probably not for all, NATs in P. 
ostreatus and Pt. gracilis. The cryptic nature of NATs hardly allows functional inferences to be made 
(e.g., based on correlated expression with sense genes, see Appendix 2), yet their recent origins and 
expression patterns suggest that they may be a source of developmental innovation at small times-
cales (Appendix 2).

To understand the composition of developmental transcriptomes, we sorted all protein coding 
genes (including developmentally expressed ones) using a phylostratigraphic approach, in which 
gene ages are assigned based on the set of species that possess clear orthologs (see Materials and 
methods). We found that developmental transcriptomes showed a clear gene age patterns: they are 
dominated by old and young genes in all species, creating ‘U’-shaped distributions (Figure 2). This 
shape simply mirrors the genome-wide gene age distribution, indicating that the genomes of the 
examined species are dominated by conserved and young genes. If we statistically corrected for these 
U-shaped gene age distributions, we found that genes displayed an enrichment of developmental 

https://doi.org/10.7554/eLife.71348
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expression (at FC > 4) among young genes in most species (Fisher’s exact test, FDR-corrected p<0.05, 
Figure 2), indicating that young genes have a disproportionately high share among developmentally 
expressed ones in fruiting bodies. This could be either because these young genes are needed for 
sculpting fruiting body morphologies or because in young genes neutrally arising expression variation 
(i.e., transcriptional noise) is better tolerated than in conserved ones and leads to patterns we recog-
nize as developmental expression.
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Figure 2. Proportion of developmentally expressed (DR >4 fold change [FC]) genes in different gene ages. * represents significant differences p-
value<0.05 (Fisher’s exact test with Benjamini–Hochberg correction). Gene age was calculated based on orthogroup membership (the presence of clear 
orthologs across species). For each species, nodes along the node path were numbered in ascending order on the species tree from root to tip starting 
with the value 1 (see Figure 1 for an example); node numbers were then used as the gene age values.
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Developmental hourglass
To examine how young genes contribute to the CM transcriptome, we calculated transcriptome age 
indices (TAIs) for each developmental stage in each species. TAI calculations weigh phylostratigraphic 
patterns by expression level, thus providing a weighted view of the contribution of young and old 
genes to the transcriptome. This way, TAIs link gene ages to the developmental hourglass concept, 
which has been proposed to explain the incorporation of genetic novelty into the developmental 
programs of CM eukaryotes (Domazet-Lošo and Tautz, 2010; Drost et al., 2017), including fungi 
(Cheng et al., 2015). The hourglass concept posits that evolutionarily older genes are expressed at 
mid-development (Domazet-Lošo and Tautz, 2010) while the alternative ‘early conservation’ model 
implies that old genes are expressed early in development (Piasecka et  al., 2013). Fungi do not 
display developmental transitions (e.g., phylotypic stage, mid-developmental transition) similar to 
those of metazoans, but they have a complex developmental program, and it has been proposed 
that the hourglass phenomenon would arise in any species with a sufficiently complex development 
(Domazet-Lošo et al., 2017). In fungi, the emergence of fruiting body primordia on vegetative mycelia 
comprises the largest developmental transition; dimensions change from fractal-like in mycelia to 3D 
in fruiting bodies, which necessitates turning on several traits for CM (Nagy et al., 2018). Accord-
ingly, the largest transcriptomic reprogramming (e.g., in terms of differentially or developmentally 
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Figure 3. Transcriptome conservation in the nine species based on transcriptome age index (TAI). VM: vegetative mycelium; P1: stage 1 primordium; P3: 
stage 3 primordium; YFB: young fruiting body; FB: fruiting body.
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expressed genes) was reported for this transition (Krizsán et al., 2019; Sipos et al., 2017; Muraguchi 
et al., 2015).

To test if a developmental hourglass can be found in fungi, we analyzed the transcriptomes of the 
nine species based on TAIs (see Materials and methods). For the examined species, we did not obtain 
uniform signal for either the hourglass or the early-conservation model (Figure 3). In other words, 
based on the TAI profiles, it appears that young genes (which drive TAI to higher values) do not have 
a uniform contribution to fruiting body transcriptomes across the examined species. In Auriculariopsis 
ampla, C. neoformans, and Schizophyllum commune, TAI values were lowest early in development, 
compatible with the early conservation model, whereas in Armillaria ostoyae, Agaricus bisporus, C. 
cinerea, Mycena kentingensis, and Pt. gracilis the opposite pattern (TAIs highest in early develop-
ment) was observed. Typical hourglass-like patterns were seen only in P. ostreatus, which seems to be 
an exception among the examined species (Figure 3).

Overall, we interpret these results as evidence for neither the hourglass nor the early conserva-
tion models being applicable to mushroom development. Complex multicellular fruiting bodies of 
fungi, to our best knowledge, do not undergo the key developmental transitions (e.g., phylotypic 
stage, mid-developmental transition) like animal embryos do (Virágh et al., 2021). Rather, they follow 
unique developmental programs, which are discussed in the second half of the article.

Allele-specific expression, but not RNA editing, is abundant in fruiting 
bodies of P. ostreatus
ASE and RNA editing are two processes that can shape the transcriptome by altering abundances 
and sequences of transcripts, respectively. Both have recently been reported in CM fungi (Gehrmann 
et al., 2018; Zhu et al., 2014), but how widespread they are and how they contribute to fruiting body 
development is poorly known. We chose P. ostreatus to analyze the contributions of ASE and RNA 
editing because both parental genomes have been sequenced (Alfaro et al., 2016; Riley et al., 2014) 
and sufficiently differ from each other to classify single-nucleotide variants either as ASE (variants 
differing from one parental genome) or RNA editing (variants differing from both parental genomes).

Overall, 2,244,348 variants served as input to the ASE analysis and were used to decide which 
haploid nucleus the reads originated from (Dryad: Table D3). We inferred that 31.2% and 32.2% of 
the reads derive from one (PC15) and the other (PC9) haploid parental nucleus, respectively, while 
36.5% of reads were not assigned to either parental genome (Dryad: Table D3). This allowed us to 
characterize 10,419 PC15 genes (84.5% of all genes and 96.8% of expressed genes) for ASE. Similar 
to gene expression, ASE levels showed clear stage- and tissue-specific patterns (Figure 4—figure 
supplement 1).

At the scale of the entire genome or scaffolds, the two parental genomes expressed almost equally 
(Figure 4—figure supplement 2), whereas at the gene level 7793 (74,8%) of the 10,419 expressed 
genes were assigned as equally expressed genes (EE genes) in all stages and tissue types and 2626 
genes (25.2%) were biased toward the same nucleus in all biological replicates of at least one stage or 
tissue (referred to as ASE genes, Figure 4). Of these, 1560 genes showed 2 < FC < 4 fold expression 
imbalance (hereafter referred to as S2 genes; 15%) and 1066 showed over fourfold difference (S4 
genes; 10.2%) between the two nuclei in at least one stage (averaged across replicates, Dryad: Table 
D4). In comparison, in A. bisporus ASE was reported for 411 genes (~4% of the genome), perhaps due 
to fewer SNPs between parental nuclei (Gehrmann et al., 2018).

Enrichment analysis based on InterPro (IPR) domains and Gene Ontology (GO) terms of ASE genes 
highlighted a significant overrepresentation of 83 IPR and 45 GO terms, respectively (Supplementary 
file 2a–d), several of which are associated with genes known to be involved in fruiting body formation 
(Krizsán et al., 2019), such as hydrophobins, glycoside hydrolase families, aquaporins, and fungal-
type protein kinases (Supplementary file 2a–d). For example, we detected ASE in hydrophobin genes 
(Figure 5a), which are one of the most studied fruiting body-related gene families (Bayry et al., 2012). 
Both the fungal-type cell wall GO term (GO:0009277) and the hydrophobin-related (IPR001338) terms 
were significantly overrepresented among genes with ASE. Of the 27 hydrophobins of P. ostreatus, 21 
showed developmental regulation (FC > 2), of which 14 showed ASE (FC > 2). Mycotoxin biosynthetic 
process (GO:0043386) was also enriched in both the GO and IPR analyses (Figure  5b). Pleurotus 
has 16 genes in the UstYa-like mycotoxin biosynthesis protein family (probably involved in dikaritin 
production; Vogt and Künzler, 2019), of which 6 were developmentally expressed (FC > 4), and all of 

https://doi.org/10.7554/eLife.71348
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Figure 4. Contribution of two haploid nuclei of P. ostreatus to total gene expression. Expression of PC15 relative 
to the sum of PC15 and PC9 (AS ratio) was visualized in a heatmap for genes that showed at least twofold allele-
specific expression (ASE) in at least one stage. Thresholds that we used to define S2 and S4 gene sets are marked 
in the color key. VM: vegetative mycelium; P1: stage 1 primordium; P3: stage 3 primordium; YFB: young fruiting 
body; FB: fruiting body; H: cap (entire); C: cap trama; L: lamellae; S: stipe; V: cuticle; D: dedifferentiated tissue of 
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The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Principal component analysis based on AS ratio.

Figure supplement 2. Allele-specific expression was not biased toward one nucleus or chromosome(s).

https://doi.org/10.7554/eLife.71348
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these showed ASE, while only 1 of the remaining 10 genes showed ASE. These examples highlighted 
how ASE can generate expression variance in developmentally expressed genes and thus potentially 
influence fruiting-related gene expression.

Adenosine-to-inosine (A-to-I) RNA editing is another source of single-nucleotide variants in the 
transcriptome that was recently described in CM fungi (Zhu et al., 2014; Liu et al., 2017; Bian et al., 
2019; Teichert, 2020). In contrast to ASE, however, our analyses did not yield considerable signal 
for A-to-I editing in P. ostreatus (Appendix 3, Dryad: Table D5). In fact, most candidate sites turned 
out to be likely sequencing errors or hallmarks of polyadenylation sites (see Appendix 3 for details), 
indicating that RNA editing is probably not associated with fruiting body development in this species.

Allele-specific expression is enriched in young genes
We next asked what mechanisms could give rise to ASE. Gehrmann et al., 2018 found that DNA 
methylation can explain at most 10% of ASE, which is consistent with the negligible role of gene body 
methylation in fungi (Montanini et al., 2014), suggesting other mechanisms. Following reports of 
divergent cis-regulatory alleles causing allelic gene expression imbalance (Gaur et al., 2013; Chen 
et al., 2016; Cowles et al., 2002; McManus et al., 2010; Wang et al., 2017), we hypothesized that 
ASE may arise from cis-regulatory divergence between nuclei of P. ostreatus. The dikaryotic stage of 
fungi, in which two haploid nuclei coexist in the same cellular compartment, represents a compatible 
environment for ASE to arise. Indeed, upstream 1 kb regions, which presumably contain cis-regulatory 
elements, of S2 and S4 genes are significantly more different (Kruskal–Wallis with Nemenyi post hoc 
test p<2e–16) between the two parents than upstream regions of EE genes (Figure 6a). This raises the 
possibility that divergent cis-regulatory elements in the same trans-regulatory cellular environment 
cause differential binding of transcription factors, resulting in biased transcript accumulation from the 
two nuclei. Amino acid sequences of S4 and S2 genes are also significantly more different between 
the two parents (Kruskal–Wallis test with Nemenyi post hoc test p<2.2e–16; Figure 6—figure supple-
ment 1a) than those of EE genes. Together, these observations indicate that ASE in P. ostreatus may 

Stages

lo
g2

(F
PK

M
)

Stages

a b
0

2
4

6

4927 PleosPC15_2_1082959

VM P1

P3
.S

P3
.H

YF
B

.S

YF
B

.H

FB
.S

FB
.C

FB
.V

FB
.L

FB
.D

2
4

6
8

5897 PleosPC15_2_29692

VM P1

P3
.S

P3
.H

YF
B

.S

YF
B

.H

FB
.S

FB
.C

FB
.V

FB
.L

FB
.D

PC15
PC9

PC15
PC9

PC15

PC9

Figure 5. Examples of allele-specific expression (ASE) during fruiting body formation of Pleurotus ostreatus. Expression level (log2 transformed 
fragments per kilobase of transcript per million mapped reads [FPKM]) from the two nuclei are colored with blue (PC9) and red (PC15). P. ostreatus gene- 
and protein IDs (PleosPC15_2) are displayed in each plot as a title. (a) Hydrophobin; (b) UstYa-like mycotoxin biosynthesis protein genes. Differences in 
the upstream gene regions are shown under the plots. VM: vegetative mycelium; P1: stage 1 primordium; P3: stage 3 primordium; YFB: young fruiting 
body, FB: fruiting body; H: cap (entire); C: cap trama; L: lamellae; S: stipe; V: cuticle; D dedifferentiated tissue of cap.

https://doi.org/10.7554/eLife.71348


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology | Evolutionary Biology

Merényi et al. eLife 2022;11:e71348. DOI: https://doi.org/10.7554/eLife.71348 � 10 of 42

arise from the divergence of cis-regulatory alleles, possibly in fast-evolving genes. Analysis of selec-
tion strength based on dN/dS ratios indicated higher dN/dS and thus weaker selection among ASE 
than among EE genes (Kruskal–Wallis test with Nemenyi post hoc test p=2.0e–10 and 1.6e–5; Figure 6b, 
Figure 6—figure supplement 1b), suggesting that ASE is enriched in genes that are released from 
selection constraints.

A well-known group of genes under relaxed selection are evolutionarily young genes; that is, 
those that duplicated or arose via de novo gene birth recently. Therefore, we tested whether ASE is 
correlated with relative gene age in our dataset. ASE genes were strongly and significantly overrepre-
sented in the youngest gene ages (Fisher’s exact test p=1.1e–12–2.4e–68), with a clear trend (Figure 7/a, 
Mann–Kendall test p=2.5e–6) of increasing ASE incidence toward young genes. At the same time, 
ASE is significantly underrepresented in the oldest age categories (gene age 1–4: p=1.2e–2–7.8e–103, 
Fisher’s exact test, Figure 7a). These observations are consistent with young genes tolerating allelic 
expression imbalance better than conserved ones, possibly due to relaxed constraint (Dong et al., 
2011; Gu et al., 2005; Kondrashov et al., 2002).

If genes under weak selection can tolerate expression variation, and developmental expression is 
considered an adaptively or neutrally arising expression variation, then ASE genes and developmen-
tally expressed genes should overlap to some extent. Indeed, half of the ASE genes (S4: 52.7%; and 
S2: 49.1%) were also developmentally expressed (FC > 4), significantly more than in EE genes (31.8%, 
Fisher’s exact test p=8.2e–58). We observed that as we move toward younger genes the proportion of 
developmentally expressed ASE genes increases compared to non-ASE genes (Figure 7b, Figure 7—
figure supplement 1). The strongest overrepresentation of ASE genes can be observed among 
developmentally expressed genes that arose in the genus Pleurotus (gene age 19–20, pS4/EE=3.0e–20-
9.52e–14, Fisher’s exact test).

Taken together, the above observations allow us to speculate that ASE is, to a large extent, likely 
arising as a neutral phenomenon. Accordingly, we see two implications on the interpretation of fruiting 
body transcriptome data. First, it is possible that some of the developmental variation generated by 
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PC15 and PC9 genes. (b) dN/dS distribution for ASE (ASE with twofold change [S2] and ASE with fourfold change [S4]) and equally expressed (EE) genes 
under the free model in CodeML.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Comparison of genes with allele-specific expression (ASE) or equally expressed (EE).
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ASE can prove adaptive at small evolutionary scales, which may manifest as between-strain differ-
ences within a species. Alternatively, ASE may be tolerated in genes with limited or species-specific 
functions, in which case it may have no or weak phenotypic impact on CM fruiting bodies. The overlap 
of ASE and developmentally expressed genes further suggests that developmentally expression in 
young genes can partially be neutrally arising expression variance as well.

Comparative transcriptomics defines core developmentally expressed 
genes in the Basidiomycota
We have shown that the high number of young developmentally expressed genes could be either the 
result of neutral transcriptional variation and/or might be responsible for species specific functions. 
Therefore, we hereafter focus on conserved developmentally expressed genes to characterize core 
functions and gene families associated with the development of CM fruiting bodies.

Fruiting bodies encompass multiple processes, including sexual spore formation, defense, and 
tissue differentiation, among others, but only some of these are relevant from the perspective of the 
origin of CM. To identify core fruiting-related genes that participate in the sculpting of fruiting bodies 
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The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Distribution of genes across gene ages (1 representing the oldest and 20 the youngest), 
broken down by allele-specific expression (ASE), developmental regulation, and duplication in Pleurotus ostreatus.
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in Agaricomycetes in general, young and/or species-specific genes and genes with species-specific 
developmental expression need to be eliminated from the transcriptomes. To remove young genes, 
we first looked for sets of 1-to-1 orthologs across the examined species, hereafter called ‘orthogroups’ 
(one gene per species), which show developmentally dynamic expression in most species (FC > 2/4, 
see Materials and methods). This yielded 1781 orthogroups, considered hereafter as conserved devel-
opmental orthogroups.

To distinguish genes related to basic sexual processes (sporulation, meiosis) from those restricted 
to CM fruiting bodies, we reanalyzed transcriptome data for sexual sporulation and basidium devel-
opment of C. neoformans (Liu et al., 2018). This species is closely related to the Agaricomycetes 
and has a simple, non-CM development, so we used it here as a minimal model of sexual develop-
ment (Figure 8a). Of the 1781 conserved orthogroups, 913 and 868 were developmentally expressed 
both in C. neoformans and CM species and only in CM species (Figure  8b, Supplementary file 
3a–c), and are referred to as shared and CM-specific orthogroups, respectively. Of the 868 CM-spe-
cific orthogroups, 754 were completely missing in C. neoformans, whereas 114 were present but 
not developmentally expressed (Figure 8b, Supplementary file 3c). The 754 orthogroups might be 
missing from C. neoformans because they evolved later (in Agaricomycetes) or because they were 
lost during the reductive evolution of this species. Shared orthogroups included highly conserved 
gene functions, such as mitosis/meiosis, general transcription factors, or ribosomal proteins, whereas 
CM-specific orthogroups contained more genes encoding sequence-specific transcription factors, cell 
wall remodeling, oxylipin biosynthesis, protein ubiquitination (F-box, BTB/POZ, and RING zinc finger 
domain proteins), as well as functionally unclassified proteins (Figure 8c, Figure 8—figure supple-
ment 1, Supplementary file 3b).

Cell division-related (DNA replication, meiosis, mitosis, DNA repair, etc.) and ribosomal protein 
encoding genes comprised the most frequent annotations in shared orthogroups (Figure  8d, 
Figure 8—figure supplement 1). Meiosis happens in basidia in both C. neoformans and fruiting body 
forming fungi and associated genes showed clear peaks in their expression (Figure 8—figure supple-
ment 2). C. neoformans showed a single peak in meiotic/mitotic gene expression, whereas CM fungi 
showed two peaks, one corresponding to meiosis in gills and another to intense cell division (mitosis) 
in primordia. Ribosomal protein gene expression, as a proxy for the activity of protein synthesis, 
has been widely associated with cell growth and proliferation (Jorgensen et al., 2002; Kraakman 
et al., 1993). Ribosomal proteins showed an early peak in all species, while in CM species a second 
peak was also observed, coincident with meiosis and spore production in gills, suggesting increased 
protein synthesis (Figure 8—figure supplement 3). We infer that in CM species the first ribosomal 
gene expression peak corresponds to an early, proliferative phase of development followed by the 
transition to growth by cell expansion (Krizsán et al., 2019), which gives the final shape and size of 
fruiting bodies before spore release.

Several cell surface proteins (fasciclins, ricin-B lectins, and the PriA family) and putative cell wall 
remodeling enzymes (e.g., chitin- and glucan- active glycoside hydrolases, expansins, CE4 chitool-
igosaccharide deacetylases, laccases) previously linked to fruiting body morphogenesis (Pezzella 
et al., 2013; Xie et al., 2018) were shared between C. neoformans and fruiting body forming species 
(Supplementary file 3d), suggesting that these families are important for sexual morphogenesis 
in general, not restricted to fruiting bodies, as thought previously. Cell wall remodeling enzymes 
have been hypothesized to produce fruiting body-specific cell wall architectures (Buser et al., 2010; 
Krizsán et al., 2019; Liu et al., 2021; Ohga et al., 2000); the upregulation of these in C. neofor-
mans suggests a role during non-CM sexual processes as well, possibly in generating aerial hypha- or 
basidium-specific cell walls. Most genes related to glycogen metabolism also showed shared expres-
sion (Supplementary file 3f). Glycogen has been known as a storage material in fruiting bodies, but 
our observations indicate that it may serve that role in C. neoformans too and possibly as an energy 
source for sexual development or as storage carbohydrate in spores, in general. Notable transcription 
factors in shared orthogroups included the light sensing white collar complex member WC-1, ortho-
logs of Saccharomyces cerevisiae sexual reproduction-related Ste12, a Basidiomycota-specific velvet 
factor, as well as orthologs of the carbon catabolite repressor CreA of Aspergillus nidulans.

In comparison to shared orthogroups, CM-specific orthogroups contained more transcription 
factors, genes related to cell wall biosynthesis/modification and defense (Figure 8—figure supple-
ment 1, Supplementary file 3d–g). 33 CM-specific orthogroups of transcription factors were detected, 

https://doi.org/10.7554/eLife.71348
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including those containing the hom1, fst3, and fst4 genes of S. commune, which were reported to 
influence the formation of fruiting bodies (Ohm et al., 2011; Figure 8—figure supplement 1). Based 
on our 109-species dataset, these three genes evolved after C. neoformans (Tremellomycetes) split off 
from CM fungi: Fst4 and Hom1 emerged in the most recent common ancestor (MRCA) of Agaricales 
and Gomphales (node 11 in Figure 1) while Fst3 appeared in the MRCA of Agaricales and Auricular-
iales (node 10 in Figure 1). Hydrophobins and cerato-platanins, as well as fatty acid desaturases and 
linoleate-diol synthases, were exclusively found in CM-specific orthogroups (Figure 8—figure supple-
ment 1). Hydrophobins and cerato-platanins are cell surface proteins that confer hydrophobicity to 
hyphae and are completely missing from the genome of C. neoformans, probably as a consequence 
of the adaptation to a primarily yeast-like lifestyle (Nagy et al., 2014). Fatty acid desaturases and 
linoleate-diol synthases are putatively related to the biosynthesis of signaling-related oxylipins (Orban 
et al., 2021) and linoleic acid (a fruiting body-enriched membrane constituent; Sakai and Kajiwara, 
2003; Song et al., 2018), respectively. We also detected a large number of conserved unannotated 
genes (172 orthogroups) among CM-specific orthogroups. Unannotated genes include, for example, 
S. commune Spc14 and Spc33, which were shown to participate in septal pore cap formation in Agar-
icomycetes (van Peer et al., 2010), and Cc.ctg1 of C. cinerea, which was suggested to be required 
for stipe elongation (Nakazawa et al., 2008). These genes are conserved across Agaricomycetes, but 
do not contain any known conserved protein motifs. Functional speculations are hardly possible for 
the vast majority of unannotated orthogroups, yet their propensity among CM-specific genes under-
scores the still cryptic nature of CM development in fungi. The complete list of shared and CM-specific 
orthogroups is given in Supplementary file 3b and c; however, their comprehensive discussion is 
beyond the scope of this article.

CM-specific orthogroups showed a phylostratigraphic enrichment in early mushroom-forming 
fungi (FDR < 0.01, Fisher’s exact test, Figure  9). We detected a preponderance of CM-specific 
orthogroup origins from the MRCA of Dacrymycetes and Agaricomycetes (node six on Figure 1) to 
that of Hymenochaetales and Agaricales (node 13 on Figure 1). These may correspond to innovations 
related to CM fruiting bodies, which is consistent with the origins of jelly-like fruiting bodies in the 
Dacrymycetes + Agaricomycetes ancestor (Virágh et al., 2021). This observation complements our 
previous analysis (Krizsán et al., 2019) that could not resolve a clear signal of genetic innovation 
correlated with CM, possibly because of confounding effects of shared orthogroups.

Conclusions
In this study, we analyzed developmental transcriptomes of complex multicellular fungi in the Agarico-
mycetes using a comparative dataset that included the first well-resolved developmental gene expres-
sion profiling data for P. ostreatus (oyster mushroom), the second most widely cultured mushroom 
species worldwide (Grimm and Wösten, 2018; Royse et al., 2017). We detected evidence for wide-
spread developmental expression of genes, ASE imbalance between parental monokaryons, NATs, 
but not for RNA editing or the developmental hourglass. We found that the detected phenomena 
affect genes of various evolutionary ages and speeds to different extents. For example, develop-
mental expression and ASE were most pronounced among evolutionarily young genes. On the other 
hand, NATs showed no conservation across species, suggesting that they evolve at a high rate. These 
observations allow us to speculate that the complex interplay of these processes in the transcriptome 
may provide multiple gears for transcriptome evolution that probably facilitates the incorporation of 
evolutionary innovations into fruiting body development of Agaricomycetes.

The availability of the genomes of both parental monokaryons (Alfaro et al., 2016; Riley et al., 
2014), as well as new strand-specific RNA-seq data, allowed bioinformatic deconvolution of RNA 
editing, ASE, and antisense transcription in the P. ostreatus transcriptome. We found virtually no 
evidence for RNA editing, whereas ASE was abundant, which supports a previous report of ASE in 

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Functional categories across the conserved developmental orthogroups.

Figure supplement 2. Expression of meiotic genes in the nine species.

Figure supplement 3. Expression of ribosomal proteins in the nine species.

Figure 8 continued
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CM fungi (Gehrmann et al., 2018). RNA editing has been recently reported in the Agaricomycetes 
(Zhu et al., 2014); however, in contrast to the Ascomycota (Lau et al., 2020; Liu et al., 2016; Teichert 
et  al., 2017), it displayed no clear-cut enrichment of A-to-I-compatible variants in three previous 
studies (Bian et al., 2019; Teichert, 2020; Zhu et al., 2014) or in this study. Rather, our final candidate 
RNA-editing sites merely alluded to potential polyA site- and/or read alignment inaccuracies, leading 
us to conclude that RNA editing is not abundant in P. ostreatus.

On the other hand, ASE was detected in thousands of genes in P. ostreatus. In a previous study on 
A. bisporus, ASE was interpreted as a regulated and adaptive mechanism that could, for example, 
aid the division of labor between nuclei in a dikaryotic hyphal cell (Gehrmann et al., 2018). We found 
that in P. ostreatus ASE is characteristic of young genes and likely arises from promoter divergence, 
which creates a cellular environment with divergent cis-regulatory alleles but identical trans-regulatory 
elements. At the same time, young genes are known to be under weaker evolutionary constraint 
than conserved ones, raising the possibility that ASE might arise neutrally in the transcriptome. This 
would be consistent with the neutral model of expression evolution (Fay and Wittkopp, 2008) and 
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nonadaptive explanations, such as leaky regulation or transcriptional noise (Cheng et al., 2017; Khan 
et al., 2012; Shih and Fay, 2021; Wainer-Katsir and Linial, 2019). Under this interpretation, ASE 
may be a tolerated, rather than an adaptive phenomenon in agaricomycete fungi. However, even if 
neutral at the level of the individual, ASE may generate useful gene expression variation that can serve 
as substrate for adaptive evolution (even for developmental functions), similar to how transcription 
from random promoters can facilitate de novo gene birth (Van Oss and Carvunis, 2019). Indeed, 
we detected ASE for several fast-evolving development-related genes, such as hydrophobins or the 
putatively defense-related dikaritin-synthesis family. ASE may have important implications in mush-
room breeding, where intraspecific hybrids (e.g., Gaitán-Hernández and Salmones, 2008) harboring 
cis-regulatory alleles with various levels of divergence may show differences in industrially relevant 
traits (Gehrmann et al., 2018).

As in the case of ASE, young genes might display more expression variance and noise across 
development, whereas genes with conserved developmental expression more likely provide clues 
about key CM functions. Fruiting bodies integrate several ancient processes, such as mitosis/meiosis 
and sporulation, which are conserved across all organisms and fungi, respectively, but distinct from 
CM morphogenesis. These considerations led us to design analyses that remove both young and 
very ancient genes. These helped us distinguish conserved genes related to simple sexual develop-
ment from those characteristic of only CM species. This may also help establishing a minimal model 
of sexual development (e.g., for pathogens like C. neoformans) in the Basidiomycota, which include 
several genes previously considered specifically expressed in fruiting bodies. Notable examples 
include fasciclins, which have been implicated in cell adhesion (Nagy et al., 2018), and the PriA family 
of secreted cell surface proteins (including C. neoformans cfl1 and dha1; Gyawali et al., 2017) with 
unknown function. On the other hand, this strategy yielded a focused set of 868 orthogroups that 
comprised genes developmentally expressed only in CM species not in C. neoformans. We speculate 
that these genes contain those related to CM morphogenesis, although this will need to be verified by 
functional studies in the future. Indeed, CM-specific orthogroups identified regulatory genes reported 
in mushrooms (e.g., hom1, fst3, fst4, wc1; Hou et al., 2020; Kamada et al., 2010; Ohm et al., 2011) 
but also novel ones, such as a velvet factor that is widely conserved in Agaricomycetes and showed 
stipe-specific expression in CM species. We anticipate that these orthogroups will comprise a valuable 
resource for functional studies of CM morphogenesis in fungi that, with continuous developments of 
genetic engineering methods, will make it possible to address the developmental roles of these genes 
at scale.

Materials and methods
Key resources table 

Reagent type (species) or resource Designation Source or reference Identifiers Additional information

Strain, strain background (Pleurotus ostreatus) N001 CETC CECT-20600 Wild-type dikaryotic strain

Strain, strain background (Pterula gracilis) CBS 309.79 CBS CBS 309.79 Wild-type dikaryotic strain

Growth condition, sampling, and RNA-sequencing
For fruiting the dikaryotic strain N001 (CECT-20600) of P. ostreatus (recently interpreted as P. cf. 
floridanus; Li et al., 2019), we first prepared spawn by inoculating sterilized rye and incubating for 
10  days. Pasteurized straw-based commercial oyster compost (95  vol%) and the colonized spawn 
(5  vol%) were mixed gently, and 3 kg were filled into polyethylene bags. Bags were incubated in 
the dark at 27°C and 85–90% relative humidity for 17 days. Next, the bags were transferred to the 
growing room for fruiting at 18–19°C, relative humidity 80–85%, and 8/16 hr light/dark period (with 
approximately 1200  lux light intensity). We sampled vegetative mycelium (VM), six developmental 
stages, and five tissue types, each in three biological replicates as explained in Figure  1—figure 
supplement 1. VM was collected from the sawdust culture. We defined stage 1 primordia (P1) as 
the globose-triangular hyphae-covered structures without clearly recognizable differentiation; stage 
2 (P2) primordia were defined as the first time point when caps were recognizable as pointed tips. 
Stage 3 primordia (P3) had a clearly differentiated and pigmented cap and an appearing fracture 
below the cap. The young fruiting body (YFB) stage was defined as the time point when the lamellae 
are clearly recognizable below the cap, and the diameter of the cap is less than 2 cm. Finally, in the 

https://doi.org/10.7554/eLife.71348


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology | Evolutionary Biology

Merényi et al. eLife 2022;11:e71348. DOI: https://doi.org/10.7554/eLife.71348 � 17 of 42

mature fruiting body stage (FB) lamellae are fully developed and meiosis/sporulation have started, 
and the cap expands (>5 cm). In the case of stage 1 and 2 primordia (P1 and P2), the whole tissue was 
collected containing both stipe and cap initials. In the stage 3 primordium (P3) and the YFB stages, 
stipes and caps were sampled separately. We divided mature fruiting bodies (FBs) into stipe (S), cap 
trama (C), cap cuticle (V), and gills (L). We defined cap (H) as the whole upper part of the fruiting body 
(in P3 and YFB) while cap trama (C) refers to just the inner part of cap without lamellae or cuticle (in 
FB) (see Figure 1—figure supplement 1). The last stage we sampled was the dedifferentiated cap 
trama (D), a dissection from inner cap tissue that was inoculated for 24 hr on a sterile PDA-agar plate 
until the emergence of new hyphae. Tissue from 3 to 8 individual fruiting bodies was pooled for each 
replicate of each sample type.

Pt. gracilis CBS 309.79 was inoculated onto Malt Extract Agar plates with cellophane and incu-
bated at 25°C for 25–27 days. For fruiting, plates were moved to a growth chamber at 15°C under 
10/14 hr light/dark period (light intensity: 11 µE m−2 s−1). VM samples were scraped off the cellophane 
after 3 days. We defined primordia (P) as small (<1 mm) globose structures, young fruiting bodies 
as ~5-mm-long awl-shaped structures, while structures longer than 10 mm were considered mature 
fruiting bodies (Figure 1—figure supplement 2).

Three biological replicates of each sample type were stored at –80°C until RNA extraction. Tissue 
samples were homogenized with micropestles using liquid N2, and RNA was extracted by using the 
Quick-RNA Miniprep Kit (Zymo Research) according to the manufacturer’s instructions. Strand-specific 
cDNA libraries were constructed from poly(A)-captured RNA using the Illumina TruSeq Stranded RNA-
Seq library preparation kit and sequenced on the Illumina HiSeq 4000/x platform in PE 2 × 150 format 
with 40 million reads per sample at OmegaBioservices (USA).

Bioinformatic analyses of RNA-seq data
New data for P. ostreatus and Pt. gracilis was reanalyzed together with previously published tran-
scriptomes of seven Basidiomycota species (Supplementary file 4). To remove adaptors, ambiguous 
nucleotides, and any low-quality read end parts, reads were trimmed using ​bbduk.​sh and overlap-
ping read pairs were merged with ​bbmerge.​sh tools (part of BBMap/BBTools; http://sourceforge.net/​
projects/bbmap/) with the following parameters: qtrim = rl trimq = 25 minlen = 40. A two-pass STAR 
alignment (Veeneman et al., 2016) was performed against reference genomes with the same param-
eters as in our previous study (Krizsán et al., 2019; FPKM_calc.R) except that the maximal intron 
length was reduced to 3000 nt. Read count data was normalized using EdgeR (Robinson et al., 2010) 
as in our previous study (Krizsán et al., 2019). Expression levels were calculated as fragments per 
kilobase of transcript per million mapped reads (FPKM). Samples, such as FBCL and FBS of C. cinerea 
from Krizsán et al., 2019, and stage 2 primordia (P2) of P. ostreatus, were excluded from our analysis 
to avoid the signs of fruiting body autolysis and for quality reasons, respectively. Raw RNA-seq reads 
have been deposited to NCBI’s GEO archive (GSE176181).

Identification of developmentally expressed genes
Developmentally expressed genes were defined as genes that show at least twofold or fourfold 
change in expression between any two fruiting body stages or tissue types and that show an expres-
sion level FPKM > 4, as detailed in Krizsán et al., 2019. The gene was excluded if the maximum 
expression was detected in the VM.

Species tree and relative gene age estimation
Protein sequences of 109 whole genomes (Supplementary file 4a) across Basidiomycota and Ascomy-
cota (as outgroup) were downloaded from the JGI genome portal (September 2019; Grigoriev et al., 
2014; Nordberg et al., 2014). All-vs-all similarity search was carried out with MMseqs2 (Steinegger 
and Söding, 2017) using three iterations and setting sensitivity to 5.7, max-seqs to 20,000, e-pro-
file to 1e-4, a preliminary coverage cutoff to 0.2, and an e-value cutoff to 0.001. Then, an asymmet-
rical coverage filtering was performed where we required ≥0.2 pairwise alignment coverage from the 
longer protein and ≥0.8 from the shorter one, with the aim to omit aspecific hits while retaining gene 
fragments (covercutter.R). Then, Markov clustering with an inflation parameter 2.0 was performed 
using the ratio of ‘number of identical matches’ (Nident) and ‘query sequence length’ (qlen) as weight 
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in the matrix. After clustering, we removed contaminating proteins from gene families following the 
logic of Richter et al., 2018.

For species tree reconstruction, we used 115 single-copy gene families that were present in ≥50% 
of the 109 species. Multiple sequence alignments were inferred using PRANK v.170427 (Löytynoja, 
2014) and trimmed with TrimAL v.1.2 (-strict) (Capella-Gutiérrez et al., 2009). Trimmed MSA-s shorter 
than 100 amino acid (AA) residues were discarded. Best partitioning schemes, substitution models, 
and species tree reconstruction were performed under maximum likelihood (ML) in IQ-TREE v1.6.12 
(Minh et al., 2020).

For gene tree reconstructions, gene families that contained at least four proteins were aligned with 
the MAFFT LINSI v7.313 (Katoh and Standley, 2013) algorithm or with FAMSA v1.5.12 (Deorowicz 
et al., 2016) and trimmed with TrimAL (gt-0.4). We inferred gene trees for each of the alignments 
in RAxmlHPC-PTHREADS-AVX2 8.2.12 under the PROTGAMMAWAG model of sequence evolution 
and assessed branch robustness using the SH-like support (Stamatakis, 2014). Rooting and gene 
tree/species tree reconciliation were performed with NOTUNG v2.9 (Darby et al., 2017) using an 
edge-weight threshold of 90. Then, a modified version of COMPARE (Nagy et al., 2014) was used to 
delineate orthogroups within gene trees.

Orthogroups were used to assign relative gene ages (hereafter: gene age), following standard 
phylostratigraphic definitions (Domazet-Loso et al., 2007): as the species tree node to which the 
MRCA of species represented in the orthogroup mapped. Enrichment of gene sets in gene age cate-
gories were analyzed with Fisher’s exact test (R core team 2020).

Transcriptome age index
TAI for each developmental stage of the nine investigated species was computed as described 
previously (Domazet-Lošo and Tautz, 2010) with slight modifications using the following formula: 

‍
TAI =

∑n
i=1 RAiei∑n

i=1 ei ‍
 , where RAi represents the relative age of gene i, ei is the log2 FPKM value of gene i at 

the given stage, and n is the total number of genes. If available, tissue-specific expression values were 
averaged for each developmental stage. The TAI values of the investigated developmental stages 
were computed for each replicate, then averaged.

Orthology based on reciprocal best hits
To characterize the conservation of developmental genes, we defined single-copy orthologs from 
the nine species based on reciprocal best hits between proteins. This strategy was stricter than the 
abovementioned orthogroup definition and was required to obtain functionally highly similar protein 
sets for comparing developmentally expressed genes. Proteins of each species were searched against 
the proteomes of other eight species using the RBH module of MMseqs2 with an e-value cutoff of 
1e-5. To remove spurious reciprocal best hits, we excluded a protein from the RBH group if its bit score 
was at least three times lower than the mean bit score of other hits of that query (self-hit excluded) 
and it shared <50% of its hits with those of the query (RBH_MMSeq.R). The orthogroups (one gene 
per species) obtained this way comprised considerably more focused gene sets than the approach 
used in Krizsán et al., 2019.

Orthogroups, which show developmentally dynamic expression with FC > 2 in at least four species, 
and with proportion ≥ 0.5, are considered hereafter as conserved developmental orthogroups. These 
conserved developmental orthogroups were also separated by the expression of Cryptococcus 
genes. We considered an orthogroup as ‘shared orthogroup’ if the Cryptococcus ortholog showed at 
least FC > 2 developmental expression, while we considered it as ‘CM-specific’ if the Cryptococcus 
ortholog was missing or did not show developmental regulation.

Annotation of genes and gene families
We detected conserved domains in proteins using InterProScan-5.47–82.0 (Jones et  al., 2014, 
IPRsimpcomp.R). Enrichment analysis on IPR domains was performed with Fisher’s exact test (R Devel-
opment Core Team, 2020), while enrichment analysis on GO categories was carried out using the R 
package topGO 2.44.0 (Alexa and Rahnenfuhrer, 2016). Proteins were further characterized by the 
best bidirectional hits to proteins of the model organisms S. cerevisiae (Engel et al., 2014), Schizosac-
charomyces pombe (Wood et al., 2012), Neurospora crassa (Galagan et al., 2003), and A. nidulans 
(Cerqueira et al., 2014).

https://doi.org/10.7554/eLife.71348
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RNA editing and allele-specific expression
To estimate the importance of RNA editing and ASE during fruiting body formation of P. ostreatus, 
we evaluated mismatches in Illumina reads according to their potential origin (RNA editing, ASE, 
noise). A custom pipeline (Figure 10) was constructed to first classify mismatches either as candidates 
for ‘RNA editing’' or ‘allele-specific.’ Then, these mismatches were analyzed further in more special-
ized pipelines. First, we hard trimmed 10–10 nucleotides (nt) from both the 3′ and 5′ end of already 
quality trimmed reads to decrease the impact of sequencing errors during variant calling. A two-round 
STAR alignment was performed against both parental genomes (PC15 and PC9) as references, with 
the abovementioned parameters. Variants were identified with ​find_​edit.​awk script excluding bases 
with a Phred quality value below 30. Nucleotides differing the same way from both parental alleles 
were considered technical errors (caused by PCR amplification, sequencing, or alignment), somatic 
mutations, or RNA editing. Therefore, such mismatches were transferred to the RNA editing-specific 
pipeline. In contrast, variants that differed only from one of the parental genomes were attributed to 
ASE. The first part of the pipeline yielded the lists of variants that were further analyzed either in the 
RNA editing-specific pipeline or in ASE pipeline, as follows.

The RNA editing pipeline is detailed in Appendix 3 and Figure 10.
In the ASE pipeline (Figure  10), only previously assigned candidate allele-specific SNPs were 

considered. All reads were assigned to the parental genome to which it exhibited a smaller Hamming 
distance (Hd = number of SNPs). We assigned a read as indecisive if (i) Hd > 1 from both reference 
genomes, (ii) Hd > 15 from any of the reference genomes (too divergent read), or (iii) if the Hd was 
equal to both parental genomes. FPKM values were calculated as described above.

To describe the relative expression between the two parental nuclei (AS ratio), the number of PC15 
reads was divided by the sum of parental-specific reads (PC15 + PC9) for each gene (g) in each sample 
(s): ‍AS = PC15gs

PC15gs+PC9gs ‍ . An AS ratio close to 1 means dominant expression from the PC15 nucleus, 
whereas an AS ratio close to 0 means dominant expression from the PC9 nucleus. An AS ratio ~0.5 
indicates equal expression from both nuclei. AS ratios were considered equal (set to 0.5) if (i) the 
expression was too low (FPKM < 2), (ii) the number of decisive reads was <16, and (iii) the proportion 
of indecisive reads was greater than 80%. We calculated two further measures, chromosome read 
ratio (CRR) and nuclear read ratio (NRR) introduced by Gehrmann et al., 2018, which represent the 
FPKM values of PC15 nucleus divided by the FPKM values of PC9 summed over chromosomes, and 
over all genes, respectively.

We identified genes with twofold (S2) and fourfold (S4) shifted expression between the two nuclei 
at AS cutoff values of AS < 0.31 or AS > 0.68 (corresponding to 5% quantile of all AS ratio values) and 
AS < 0.2 or AS > 0.8, respectively. For passing through, these filters and geometric means of repli-
cates had to reach the upper limits (0.68 or 0.8) for PC15-specific ASE or less than lower limits (0.31 
or 0.2) for PC9-specific ASE.

In order to understand how ASE may arise mechanistically, we compared putative promoters of ASE 
genes among parents, defined as the region from spanning 1000 nt upstream to 200 nt downstream of 
the transcription start site. Differences between the two parental regions were expressed as percent 
identity. For this analysis, the meanwhile released, improved version of PC9 was used (Lee et al., 
2021). Protein sequences of parents were aligned with PRANK and an ML distance was calculated 
under WAG model (​dist.​ml function from phangorn R package; Schliep, 2011). Gene pairs with puta-
tive promoters <75% similar or where protein ML distances were >0.5 and alignment coverage <0.7 
were removed to avoid potential orthology assignment errors. To identify the strength of selection for 
these genes, we inferred ω (dN/dS ratios) under two evolutionary models using CodeML, a program 
from PAML 4.4 (Yang, 2007). For this, CDSs from the genomes of species in the Pleurotinae clade 
(Supplementary file 4a) were extracted using GenomicFeatures packages (Lawrence et al., 2013). 
1:1 orthologs were detected with MMseqs RBH function and codon aligned using –code option of 
PRANK. Reference tree for CodeML was extracted from the species tree, and ω values were calcu-
lated under 1-ratio (M0) model assuming that ω has been constant throughout the tree and free‐ratio 
model (fb) allowing an independent ω for each branch in the tree. For statistical comparisons, the 
Kruskal–Wallis rank-sum test with Nemenyi post hoc test or paired Wilcoxon signed-rank test and 
Fisher’s exact test were implemented in R (R Development Core Team, 2020).
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RNA Editing Allele-speci�c expression

Figure 10. Pipeline of RNA editing and allele-specific expression annotation. Names of scripts available in Dryad (doi:https://doi.org.10.5061/
dryad.5qfttdz5m) are displayed next to process boxes. VRS: variant read support; RS: read support; RVF: relative variant frequency.
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Appendix 1
Identification of gene clusters
Genes contributing to the same phenotype can occasionally be found clustered together in 
fungal genomes. Because such clustering is predicted to both facilitate gene co-expression and 
maintain linkage over long periods of evolutionary time, we tested whether any developmentally 
expressed genes were physically clustered together more often than expected by chance, and 
whether any of these clusters were conserved across species. Furthermore, since many secondary 
metabolites encoded by gene clusters play a role in development, we tested if any of these 
developmentally expressed gene clusters might overlap with predicted biosynthetic gene clusters 
in eight Basidiomycota species, including P. ostreatus and Pt. gracilis (Dryad: Table D2). We first 
designated all developmentally expressed genes separated by six or less intervening genes as 
candidate clusters. We then calculated the probability of observing each cluster using a binomial 
test, where expected cluster size was estimated assuming that developmentally expressed genes 
are randomly distributed in the genome. Clusters with a probability of observation  <0.01 were 
designated clustering ‘hotspots.’ We checked hotspots for overlap with predicted biosynthetic 
gene clusters using de novo antiSMASH v5 annotations (Medema et al., 2011). Conservation of 
hotspots between different fungal species was assessed by BLASTp (Altschul et al., 1990) using two 
metrics: percent gene content similarity, which is the number of genes in the query hotspot that are 
also clustered together in the target genome; and percent FDBR similarity, which is the number of 
developmentally expressed genes in the query hotspot that are also developmentally expressed and 
clustered together in the target genome.

Developmental gene clusters are not conserved
Having established that the developmental hourglass may not apply to fungi, we next asked if we 
can find evidence in fungi for the physical clustering of developmental genes in the genome, a 
characteristic of several key genes involved in animal pattern formation. Certain fungal genes, such 
as those encoding secondary metabolite biosynthetic pathways, are well known to cluster physically 
(Keller, 2019), whereas similar traits for developmental genes have not yet been investigated. We 
found evidence for the occasional grouping of developmentally expressed genes into hotspots in 
the genomes (see Materials and methods; Appendix  1—figure 1, Dryad: Table D2). Altogether 
153 hotspots were detected in eight genomes; however, most of these were species-specific and 
not conserved across species (e.g., the luciferase cluster in the bioluminescent A. ostoyae; Ke 
et al., 2020). Surprisingly, most hotspots did not overlap with predicted biosynthetic gene clusters 
(Appendix 1—figure 2). The presence of hotspots but the lack of conservation suggests that these 
developmental gene clusters may be linked to species-specific developmental traits.

https://doi.org/10.7554/eLife.71348
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Appendix 1—figure 1. Developmentally expressed genes occasionally cluster together in genomic ‘hotspots.’. 
A bar chart summarizing the number of hotspots detected per genome (total = 153) and the degree of overlap 
between hotspots and predicted biosynthetic gene clusters (BGCs).
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Appendix 1—figure 2. Developmentally expressed genes occasionally cluster together in genomic ‘hotspots.’. 
 (a) A box-and-whisker plot summarizing the distribution of % gene content conservation and the distribution of % 
Dev.Reg. abundance conservation of all 153 hotspots when searched for in genomes other than the one in which 
they are found. Significance between distributions determined by the Wilcoxon rank-sum test. (b) Scatterplot 
and linear regression describing the relationship between the % gene content conservation and % Dev.Reg. 
abundance conservation of each of the 153 hotspots when searched for in genomes other than the one in which 
they are found (number of observations = 153 hotspot queries × 8 target genomes). % Dev.Reg. abundance 
conservation may exceed 100% if more Dev.Reg. genes are found in target regions as compared with query 
hotspot. The shaded region around the fitted regression line represents 95% confidence interval.
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Appendix 2
Identification of natural antisense transcripts
NATs were defined as de novo-assembled transcripts located antisense to a gene >200 nt long, 
not showing similarity to structural RNA species, not overlapping with UTRs of neighboring genes, 
and showing an expression above a given cutoff (Appendix 2—figure 1). For de novo transcript 
assembly, quality filtered reads were first mapped to the reference genome using STAR_2.6.1a_08–27 
(Veeneman et al., 2016). After identifying splice sites, a second mapping was performed. StringTie 
version 2.0.3 (Pertea et al., 2015) was used to generate a genome-guided de novo transcriptome 
assembly and annotation (NATextractor.R). Transcripts shorter than 200 nt or supported by <5 reads 
in a single sample were excluded. Output GTF files from each sample were merged, compared 
to the reference annotation with gffcompare v0.11.2 (Pertea and Pertea, 2020), and transcripts 
with exonic overlap on the opposite strand (i.e., antisense; class_code x) were retained. To exclude 
transcripts mapped to repeats, RepeatModeler v2.0 (Flynn et al., 2020) was used to identify repeat 
regions of genomes. Conserved structural RNA transcripts (tRNAs, U2 spliceosome, ribosomal 
RNAs, Hammerhead ribozymes) were identified with Infernal 1.1.3 (Nawrocki, 2013) based on the 
Rfam database (Kalvari et al., 2021) and were removed. Fungal genomes are densely packed with 
genes, raising the possibility that a detected transcript is actually the UTR region of the closest gene 
(Rhind et al., 2011). To avoid identifying UTR regions as NATs, candidate NATs showing a strongly 
correlated expression (Pearson’s p-value < 0.05) and located <500 nt from the closest coding genes 
on the same strand were discarded from further analysis. Coding potential of NATs was characterized 
based on the default cutoff of the Coding Potential Calculator CPC2 (Kang et al., 2017).

https://doi.org/10.7554/eLife.71348
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P. gracilisP. ostreatus

Appendix 2—figure 1. Pipeline of natural antisense transcripts. Numbers represent the retained transcripts in 
each filtering step.

Expression level of NATs was quantified with the FeatureCounts R package (Liao et al., 2014; 
NAT_FeatureCounts.R) based on the union of the exons per transcript. FPKM calculations were 
carried out as mentioned above, only transcripts with at least five mapped reads in at least three 
samples were retained. Developmental regulation of potential NATs was calculated as for genes. To 
assess conservation of NATs, we mapped the transcripts on the genomes of the 109 species with 
minimap2 v 2.17 (options: -k15 -w5 --splice -g2000 -G200k -A1 -B1 -O1,20 -E1,0 -C9 -z500 -ub 
--junc-bonus = 9 --splice-­flank = yes) (Li, 2018).

Natural antisense transcripts show fast turnover
NATs are abundantly transcribed from fungal genomes and can include important regulatory RNAs 
that influence, among others, sexual development (Donaldson et al., 2017; Donaldson and Saville, 
2012; Faghihi and Wahlestedt, 2009; Kim et al., 2018). We analyzed NATs in P. ostreatus and Pt. 
gracilis based on strand-specific RNA-seq data and identified 2043 and 763 de novo transcripts as 
NATs (Appendix 2—figure 1), corresponding to 17.6 and 6.3% of protein coding genes, respectively. 
Lengths, exon structures, and coding potentials of the assembled NATs were similar to those in earlier 
reports (Borgognone et al., 2019; Kim et al., 2018; Wang et al., 2019; Appendix 2—figures 1–2).

https://doi.org/10.7554/eLife.71348
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Appendix 2—figure 2. Length (a, b) and exon number (c, d) distribution of natural antisense transcripts (NATs) 
in Pleurotus ostreatus (a, c) and Pterula gracilis (b, d). NATs were divided into putatively coding and noncoding 
categories using the default settings of CPC2 (Kang et al., 2017).

NATs showed developmentally dynamic expressions with NAT expression patterns reflecting stage 
and tissue identity, with tight grouping of biological replicates (Appendix 2—figure 3). Similarly to 
the pattern of MDS for total gene expression, FBC and FBS samples and the early stages (P1, P3, 
and YFB) were close to each other. As many as 1173 (57.4%) and 126 (16.5%) NATs of P. ostreatus 
and Pt. gracilis were developmentally expressed, respectively. These may expand the space of 
developmentally expressed transcripts in fruiting bodies, thus, irrespective of their exact mechanism 
of action, can contribute to CM. In P. ostreatus, we identified 166 NATs (8.1%) that showed at least a 
twofold higher expression in all fruiting body stages than in VM, comparatively more than predicted 
coding genes (4.8%). Such transcripts may regulate the transition from simple multicellularity in VM 
to complex multicellularity in FB, one of the most significant transcriptomic reprogramming events in 
the fungal life cycle (Krizsán et al., 2019). Kim et al., 2018 found a considerable proportion (21.3%) 
of lncRNA (which overlap only partially with NATs) that might have a role in sexual development of 
Fusarium graminearum. Nevertheless, only 39.1% of P. ostreatus and 4.1% of Pt. gracilis of the NAT-
possessing genes show developmental regulation with at least a fourfold change.

https://doi.org/10.7554/eLife.71348


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology | Evolutionary Biology

Merényi et al. eLife 2022;11:e71348. DOI: https://doi.org/10.7554/eLife.71348 � 34 of 42

Appendix 2—figure 3. Principal component analysis (PCA) plot based on the expression of natural antisense 
transcripts detected in (a) Pleurotus ostreatus and (b) Pterula gracilis. VM: vegetative mycelium; P1: stage 1 
Appendix 2—figure 3 continued on next page

https://doi.org/10.7554/eLife.71348
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primordium; P3: stage 3 primordium; YFB: young fruiting body; FB: fruiting body; H: cap (entire); C: cap trama (only 
the inner part, without lamellae, or skin); L: lamellae; S: stipe; V: cuticle; D: dedifferentiated tissue of cap.

The detected NATs displayed low-sequence conservation. Of the 2043 NATs of P. ostreatus, 1815 
(89%) showed homology in the closest sequenced species (Pleurotus eryngii) and only 177 (8.7%) 
in other species (Appendix 2—figure 4). In Pt. gracilis, only 15 (2.0 %) NATs showed homology in 
other species (Appendix 2—figure 5). We find that low overlap with gene exons can explain the 
lack of sequence conservation in NATs. In P. ostreatus, only 596 of the 2043 NATs (29%) showed at 
least 75% total exon–exon overlap. This suggests that, even if located in conserved genes, NATs 
mostly overlap with introns or intergenic regions, which may allow rapid sequence turnover, as 
reported in vertebrates (Kapusta and Feschotte, 2014). We also failed to detect conservation of 
sense gene identity: of the 6232 co-orthologous genes between P. ostreatus and Pt. gracilis, only 70 
showed evidence for NAT in both species. All of these observations imply low conservation of NATs 
at the sequence level, consistent with the view that NAT homology is detectable only among closely 
related species (Donaldson and Saville, 2013; Rhind et al., 2011).

Antisense transcript

Protein of sense transcript 7000 100 200 300 400 500 600

1000 20 40 8060

Appendix 2—figure 4. Conservation of sense genes and their natural antisense transcripts (NATs) of Pleurotus 
ostreatus across 109 species. (a) Similarity of proteins of sense transcripts – having antisense transcripts – measured 
with –log10(e-value) from MMseqs search against the 109 species dataset. (b) Mapping score of antisense 
transcripts based on minimap2. Warmer color represents a higher similarity according to the scales. Black square 
denotes P. ostreatus. Rows represent the species while columns represent the antisense query transcripts (b) or 
proteins from sense transcripts (a). For a larger species tree, see Figure 1.

Appendix 2—figure 3 continued
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Appendix 2—figure 5. Conservation of sense genes and their natural antisense transcripts (NATs) of Pterula 
gracilis across 109 species. (a) Similarity of proteins of sense transcripts – having antisense transcripts – measured 
with –log10(e-value) from MMseqs search against the 109 species dataset. (b) Mapping score of antisense 
transcripts based on minimap2. Warmer color represents a higher similarity according to the scales. Black square 
denotes Pt. gracilis. Rows represent the species while columns represent the antisense query transcripts (b) or 
proteins from sense transcripts (a). For a larger species tree, see Figure 1.

In P. ostreatus, 263 NATs (12.8%) showed significant positive (Pearson r > 0.7, p<0.05, Appendix 2—
figures 6–7, p<0.01) while 33 showed significant negative expression correlation (Pearson r < –0.7, 
p<0.05, Appendix 2—figure 8) with their sense genes. An enrichment of positive over negative 
correlation between sense and antisense transcript pairs was noted previously in Fusarium and in 
Ganoderma lucidum (Kim et al., 2018; Shao et al., 2017). Positively correlating pairs may be co-
regulated via chromatin accessibility or be stabilized via dsRNA formation (Donaldson and Saville, 
2013), whereas negative correlation can be explained by transcriptional interference, antisense-
mediated chromatin remodeling or RNA masking (reviewed in Donaldson and Saville, 2012), all of 
which may be relevant to CM, but further research is needed to clarify their roles.

https://doi.org/10.7554/eLife.71348
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Appendix 2—figure 6. Expression pattern of 263 sense transcripts and their antisense transcripts that showed 
significant positive correlation (Pearson r ≥ 0.7, p<0.05) in Pleurotus ostreatus. Corresponding lines of the 
heatmaps contain sense and antisense transcript pairs. VM: vegetative mycelium; P1: stage 1 primordium; P3: 
stage 3 primordium; YFB: young fruiting body; FB: fruiting body; H: cap (entire); C: cap trama (only the inner part, 
without lamellae, or skin); L: lamellae; S: stipe; V: cuticle; D: dedifferentiated tissue of cap.

https://doi.org/10.7554/eLife.71348
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Appendix 2—figure 7. Permutation test for the number of (a) negative (r < −0.7, p<0.05) and (b) positive (r > 0.7, 
p<0.05) correlations among the expression of natural antisense transcripts (NATs) and random genes. Red line 
represents the observed number of significant correlations.
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Appendix 2—figure 8. Expression pattern of 33 sense transcripts and their antisense transcripts that showed 
significant negative correlation (Pearson r ≤ –0.7, p<0.05) in Pleurotus ostreatus. Corresponding lines of the 
heatmaps contain sense and antisense transcript pairs. VM: vegetative mycelium; P1: stage 1 primordium; P3: 
stage 3 primordium; YFB: young fruiting body; FB: fruiting body; H: cap (entire); C: cap trama (only the inner part, 
without lamellae, or skin); L: lamellae; S: stipe; V: cuticle; D: dedifferentiated tissue of cap.

Together, the developmentally relevant expression, the lack of functional clues (Appendix 2—
figure 9) and the low conservation of NATs suggest that antisense transcription is a fast-evolving 
component of CM transcriptomes with potential functions in modulating gene expression. 
Nevertheless, as above, nonadaptive explanations should not be ruled out, such as some NATs being 
transcriptional noise or leakage (Dahary et al., 2005; Lloréns-Rico et al., 2016).

https://doi.org/10.7554/eLife.71348
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Appendix 2—figure 9. Gene Ontology (GO) enrichment for genes that have natural antisense transcripts (a) in 
Pleurotus ostreatus and (b) Pterula gracilis. KS means the p-value of Kolmogorov–Smirnov test implemented in the 
R package ‘topGO.’ BP: biological process; MF: molecular function; CC: cellular component.

https://doi.org/10.7554/eLife.71348
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Appendix 3
RNA editing pipeline
In the RNA editing pipeline (Figure 10), we re-called variants for sites with pysamstats 1.0.1 (https://​
github.com/alimanfoo/pysamstats; Miles, 2017; min-base quality 30 and max depth to 500,000) 
that were input to the RNA editing pipeline. We continued the analysis with only those variants 
that had ≥3 supporting reads, mapped to both reference genomes, and the total read support did 
not differ more than five times between the two parental mappings in order to avoid signal coming 
purely from the differential mapping to the two reference genomes (e.g., erroneous alignment). 
Further, we removed variants where read coverage was <10, a single variant was supported by <3 
reads, or the proportion of the variant was below 0.1% in order to reduce the effect of technical 
errors, but retain editing sites. Because erroneous alignment around splice sites can produce variants 
indistinguishable from editing events, we discarded variants in which multiple sites with mismatches 
grouped within 3 nt distance of each other and in which the proportion of gaps exceeded 80% of 
the read coverage. After this step, we kept only variants that were present in at least two biological 
replicates. In addition, for a variant to be considered an RNA editing site, it had to be significantly 
more frequent across all samples (Wilcoxon rank-sum test with p<0.01) than any other nucleotide at 
that site (except reference). Finally, we considered a site an RNA editing site if the geometric mean 
of its frequencies across the three replicates exceeded 1%. Relative to the editing site, –3 upstream 
and  +3 downstream surrounding sequences were extracted with rtracklayer package (Lawrence 
et al., 2009) and motifs were searched with the seqlogo package (Bembom and Ivanek, 2020).

RNA editing is not abundant in fruiting body transcriptomes
In the RNA editing pipeline (Figure 10), 627,093 of the 1,999,221 input variants remained after 
filtering for extreme low frequency (<0.1%). We chose this permissive threshold (as opposed to 
1/3/10% in other protocols; Zhu et al., 2014) to avoid discarding any signal in the early steps. As 
many as 546,790 sites were located in gene regions, of which 346,105 possibly corresponded to 
erroneous mapping around splice sites (Appendix 3—figure 1), while 218,685 were retained for 
further analysis. Surprisingly, only 1.2% of these (2701 sites) were consistent between at least two 
of the three biological replicates. After eliminating potential sequencing errors (Wilcoxon signed-
rank test, p-value<0.01), we obtained 1179 variants. Requiring at least 1% mean variant frequency 
in at least one stage left 332 potential RNA editing sites, with 6–62 in each variant type (Dryad: 
Table D5). Among these, A-to-I and C-to-U transitions were not enriched (Appendix 3—figure 2a), 
consistent with previous Basidiomycota studies (Bian et al., 2019; Teichert, 2020). To explore other 
explanations, we examined what, other than RNA editing, our remaining variants could potentially 
correspond to. By examining motifs around the 332 sites, we detected solely an enrichment of 
adenines 1–2 nt downstream of C-to-A sites (Appendix 3—figure 2c). However, because 69% (20 
of 29) of these were within ±20 nt from the 3′ end of the last exon of genes, we think that adenine 
enrichment corresponds to the polyadenylation sequence. Together, we interpret these results as 
limited or no evidence for RNA editing in P. ostreatus.

https://doi.org/10.7554/eLife.71348
https://github.com/alimanfoo/pysamstats
https://github.com/alimanfoo/pysamstats
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Appendix 3—figure 1. Examples for variants of different types. In (a) and (b), erroneous read alignment around 
splice sites causing variants (red arrows) similar to RNA editing. In (c) and (d), green arrows represent potential RNA 
editing sites, while yellow arrows represent allele-specific SNPs.

https://doi.org/10.7554/eLife.71348
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Appendix 3—figure 2. Enrichment of variant types and motifs among potential RNA editing sites. (a) Distribution 
of variant types retained in the RNA editing-specific pipeline with A-to-I variants being marked with green. 
(b–e) Sequence motifs surrounding the most frequent candidate RNA editing changes displayed as sequence 
logos. Fourth position represents the variants among reads. 1–3 is the upstream three positions, while 4–7 is the 
downstream three positions. (b) A-to-G, (c) C-to-A, (d) C-to-T, and (e) G-to-A changes.

https://doi.org/10.7554/eLife.71348
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