18 research outputs found

    Free-breathing 3D whole-heart joint T<sub>1</sub>/T<sub>2</sub> mapping and water/fat imaging at 0.55 T

    Get PDF
    Purpose: To develop and validate a highly efficient motion compensated free-breathing isotropic resolution 3D whole-heart joint T 1/T 2 mapping sequence with anatomical water/fat imaging at 0.55 T. Methods: The proposed sequence takes advantage of shorter T 1 at 0.55 T to acquire three interleaved water/fat volumes with inversion-recovery preparation, no preparation, and T 2 preparation, respectively. Image navigators were used to facilitate nonrigid motion-compensated image reconstruction. T 1 and T 2 maps were jointly calculated by a dictionary matching method. Validations were performed with simulation, phantom, and in vivo experiments on 10 healthy volunteers and 1 patient. The performance of the proposed sequence was compared with conventional 2D mapping sequences including modified Look-Locker inversion recovery and T 2-prepared balanced steady-SSFP sequence. Results: The proposed sequence has a good T 1 and T 2 encoding sensitivity in simulation, and excellent agreement with spin-echo reference T 1 and T 2 values was observed in a standardized T 1/T 2 phantom (R 2 = 0.99). In vivo experiments provided good-quality co-registered 3D whole-heart T 1 and T 2 maps with 2-mm isotropic resolution in a short scan time of about 7 min. For healthy volunteers, left-ventricle T 1 mean and SD measured by the proposed sequence were both comparable with those of modified Look-Locker inversion recovery (640 ± 35 vs. 630 ± 25 ms [p = 0.44] and 49.9 ± 9.3 vs. 54.4 ± 20.5 ms [p = 0.42]), whereas left-ventricle T 2 mean and SD measured by the proposed sequence were both slightly lower than those of T 2-prepared balanced SSFP (53.8 ± 5.5 vs. 58.6 ± 3.3 ms [p &lt; 0.01] and 5.2 ± 0.9 vs. 6.1 ± 0.8 ms [p = 0.03]). Myocardial T 1 and T 2 in the patient measured by the proposed sequence were in good agreement with conventional 2D sequences and late gadolinium enhancement. Conclusion: The proposed sequence simultaneously acquires 3D whole-heart T 1 and T 2 mapping with anatomical water/fat imaging at 0.55 T in a fast and efficient 7-min scan. Further investigation in patients with cardiovascular disease is now warranted.</p

    Prosthetic heart valve evaluation by magnetic resonance imaging

    Get PDF
    Objective: To evaluate the potential of magnetic resonance imaging (MRI) for evaluation of velocity fields downstream of prosthetic aortic valves. Furthermore, to provide comparative data from bileaflet aortic valve prostheses in vitro and in patients. Methods: A pulsatile flow loop was set up in a 7.0 Tesla MRI scanner to study fluid velocity data downstream of a 25 mm aortic bileaflet heart valve prosthesis. Three dimensional surface plots of velocity fields were displayed. In six NYHA class I patients blood velocity profiles were studied downstream of their St. Jude Medical aortic valves using a 1.5 Tesla MRI whole-body scanner. Blood velocity data were displayed as mentioned above. Results: Fluid velocity profiles obtained from in vitro studies 0.25 valve diameter downstream of the valve exhibited significant details about the cross sectional distribution of fluid velocities. This distribution completely reflected the valve design. Blood velocity profiles in humans were considerably smoother and in some cases skewed with the highest velocities toward the anterior-right ascending aortic wall. Conclusion: Display and interpretation of fluid and blood velocity data obtained downstream of prosthetic valves is feasible both in vitro and in vivo using the MRI technique. An in vitro model with a straight tube and the test valve oriented orthogonally to the long axis of the test tube does not entail fluid velocity profiles which are compatible to those obtained from humans, probably due to the much more complex human geometry, and variable alignment of the valve with the ascending aorta. With the steadily improving quality of MRI scanners this technique has significant potential for comparative in vitro and in vivo hemodynamic evaluation of heart valve

    3D Dixon water-fat LGE imaging with image navigator and compressed sensing in cardiac MRI

    Get PDF
    Objectives To evaluate an image-navigated isotropic high-resolution 3D late gadolinium enhancement (LGE) prototype sequence with compressed sensing and Dixon water-fat separation in a clinical routine setting. Material and methods Forty consecutive patients scheduled for cardiac MRI were enrolled prospectively and examined with 1.5 T MRI. Overall subjective image quality, LGE pattern and extent, diagnostic confidence for detection of LGE, and scan time were evaluated and compared to standard 2D LGE imaging. Robustness of Dixon fat suppression was evaluated for 3D Dixon LGE imaging. For statistical analysis, the non-parametric Wilcoxon rank sum test was performed. Results LGE was rated as ischemic in 9 patients and non-ischemic in 11 patients while it was absent in 20 patients. Image quality and diagnostic confidence were comparable between both techniques (p = 0.67 and p = 0.66, respectively). LGE extent with respect to segmental or transmural myocardial enhancement was identical between 2D and 3D (water-only and in-phase). LGE size was comparable (3D 8.4 ± 7.2 g, 2D 8.7 ± 7.3 g, p = 0.19). Good or excellent fat suppression was achieved in 93% of the 3D LGE datasets. In 6 patients with pericarditis, the 3D sequence with Dixon fat suppression allowed for a better detection of pericardial LGE. Scan duration was significantly longer for 3D imaging (2D median 9:32 min vs. 3D median 10:46 min, p = 0.001). Conclusion The 3D LGE sequence provides comparable LGE detection compared to 2D imaging and seems to be superior in evaluating the extent of pericardial involvement in patients suspected with pericarditis due to the robust Dixon fat suppression. Key Points • Three-dimensional LGE imaging provides high-resolution detection of myocardial scarring. • Robust Dixon water-fat separation aids in the assessment of pericardial disease. • The 2D image navigator technique enables 100% respiratory scan efficacy and permits predictable scan times

    3D SASHA myocardial T1 mapping with high accuracy and improved precision

    No full text
    International audiencePurpose: To improve the precision of a free-breathing 3D saturation-recovery-based myocardial T1 mapping sequence using a post-processing 3D denoising technique.Methods: A T1 phantom and 15 healthy subjects were scanned on a 1.5 T MRI scanner using 3D saturation-recovery single-shot acquisition (SASHA) for myocardial T1 mapping. A 3D denoising technique was applied to the native T1-weighted images before pixel-wise T1 fitting. The denoising technique imposes edge-preserving regularity and exploits the co-occurrence of 3D spatial gradients in the native T1-weighted images by incorporating a multi-contrast Beltrami regularization. Additionally, 2D modified Look-Locker inversion recovery (MOLLI) acquisitions were performed for comparison purposes. Accuracy and precision were measured in the myocardial septum of 2D MOLLI and 3D SASHA T1 maps and then compared. Furthermore, the accuracy and precision of the proposed approach were evaluated in a standardized phantom in comparison to an inversion-recovery spin-echo sequence (IRSE).Results: For the phantom study, Bland-Altman plots showed good agreement in terms of accuracy between IRSE and 3D SASHA, both on non-denoised and denoised T1 maps (mean difference -1.4 ± 18.9 ms and -4.4 ± 21.2 ms, respectively), while 2D MOLLI generally underestimated the T1 values (69.4 ± 48.4 ms). For the in vivo study, there was a statistical difference between the precision measured on 2D MOLLI and on non-denoised 3D SASHA T1 maps (P = 0.005), while there was no statistical difference after denoising (P = 0.95).Conclusion: The precision of 3D SASHA myocardial T1 mapping was substantially improved using a 3D Beltrami regularization based denoising technique and was similar to that of 2D MOLLI T1 mapping, while preserving the higher accuracy and whole-heart coverage of 3D SASHA

    Correction to:3D SASHA myocardial T1 mapping with high accuracy and improved precision

    No full text
    The original version of this article unfortunately contained a mistake. The presentation of Equation was incorrect. The corrected equation is given below

    Non-rigid motion-corrected free-breathing 3D myocardial Dixon LGE imaging in a clinical setting

    Get PDF
    OBJECTIVES: To investigate the efficacy of an in-line non-rigid motion-compensated reconstruction (NRC) in an image-navigated high-resolution three-dimensional late gadolinium enhancement (LGE) sequence with Dixon water–fat separation, in a clinical setting. METHODS: Forty-seven consecutive patients were enrolled prospectively and examined with 1.5 T MRI. NRC reconstructions were compared to translational motion-compensated reconstructions (TC) of the same datasets in overall and different sub-category image quality scores, diagnostic confidence, contrast ratios, LGE pattern, and semiautomatic LGE quantification. RESULTS: NRC outperformed TC in all image quality scores (p < 0.001 to 0.016; e.g., overall image quality 5/5 points vs. 4/5). Overall image quality was downgraded in only 23% of NRC datasets vs. 53% of TC datasets due to residual respiratory motion. In both reconstructions, LGE was rated as ischemic in 11 patients and non-ischemic in 10 patients, while it was absent in 26 patients. NRC delivered significantly higher LGE-to-myocardium and blood-to-myocardium contrast ratios (median 6.33 vs. 5.96, p < 0.001 and 4.88 vs. 4.66, p < 0.001, respectively). Automatically detected LGE mass was significantly lower in the NRC reconstruction (p < 0.001). Diagnostic confidence was identical in all cases, with high confidence in 89% and probable in 11% datasets for both reconstructions. No case was rated as inconclusive. CONCLUSIONS: The in-line implementation of a non-rigid motion-compensated reconstruction framework improved image quality in image-navigated free-breathing, isotropic high-resolution 3D LGE imaging with undersampled spiral-like Cartesian sampling and Dixon water–fat separation compared to translational motion correction of the same datasets. The sharper depictions of LGE may lead to more accurate measures of LGE mass. KEY POINTS: • 3D LGE imaging provides high-resolution detection of myocardial scarring. • Non-rigid motion correction provides better image quality in cardiac MRI. • Non-rigid motion correction may lead to more accurate measures of LGE mass

    3D Dixon water-fat LGE imaging with image navigator and compressed sensing in cardiac MRI

    No full text
    Objectives!#!To evaluate an image-navigated isotropic high-resolution 3D late gadolinium enhancement (LGE) prototype sequence with compressed sensing and Dixon water-fat separation in a clinical routine setting.!##!Material and methods!#!Forty consecutive patients scheduled for cardiac MRI were enrolled prospectively and examined with 1.5 T MRI. Overall subjective image quality, LGE pattern and extent, diagnostic confidence for detection of LGE, and scan time were evaluated and compared to standard 2D LGE imaging. Robustness of Dixon fat suppression was evaluated for 3D Dixon LGE imaging. For statistical analysis, the non-parametric Wilcoxon rank sum test was performed.!##!Results!#!LGE was rated as ischemic in 9 patients and non-ischemic in 11 patients while it was absent in 20 patients. Image quality and diagnostic confidence were comparable between both techniques (p = 0.67 and p = 0.66, respectively). LGE extent with respect to segmental or transmural myocardial enhancement was identical between 2D and 3D (water-only and in-phase). LGE size was comparable (3D 8.4 ± 7.2 g, 2D 8.7 ± 7.3 g, p = 0.19). Good or excellent fat suppression was achieved in 93% of the 3D LGE datasets. In 6 patients with pericarditis, the 3D sequence with Dixon fat suppression allowed for a better detection of pericardial LGE. Scan duration was significantly longer for 3D imaging (2D median 9:32 min vs. 3D median 10:46 min, p = 0.001).!##!Conclusion!#!The 3D LGE sequence provides comparable LGE detection compared to 2D imaging and seems to be superior in evaluating the extent of pericardial involvement in patients suspected with pericarditis due to the robust Dixon fat suppression.!##!Key points!#!• Three-dimensional LGE imaging provides high-resolution detection of myocardial scarring. • Robust Dixon water-fat separation aids in the assessment of pericardial disease. • The 2D image navigator technique enables 100% respiratory scan efficacy and permits predictable scan times
    corecore