89 research outputs found

    Local sclerotherapy with Polydocanol (Aethoxysklerol®) for the treatment of Epistaxis in Rendu-Osler-Weber or Hereditary Hemorrhagic Telangiectasia (HHT): 15 years of experience*

    Get PDF
    Producción CientíficaHereditary Haemorrhagic Telangiectasia or Rendu-Osler-Weber syndrome is a rare autosomal dominant vascular disease characterized by mucocutaneous and gastrointestinal telangiectases and localized arteriovenous malformations in lung, brain and liver. Epistaxis, due to rupture of telangiectases of the nasal mucosa, is the most frequent clinical manifestation, leading in many cases to severe impairment of the quality of life in the patients. Though several treatments have been used to reduce epistaxis, none have been completely effective, with the exception of polydocanol (Aethoxysklerol®) in submucosal or subpericondrial injections, which was first presented in 2000 with very good results. After fifteen years using polydocanol in submucosal injections on 45 patients and with nearly 300 injections, we have observed that in 95% of all cases, their nose bleeds improved with respect to frequency and quantity without any important side effects. There was just one case of septal perforation, another with increased septal perforation, and one patient who suffered from dizziness and blurred vision for a few minutes. In this paper the results obtained using this technique over a fifteen-year period will be presented and evaluated

    Mutation affecting the proximal promoter of Endoglin as the origin of hereditary hemorrhagic telangiectasia type 1

    Get PDF
    [Background] Hereditary hemorrhagic telangiectasia (HHT) is a vascular multi-organ system disorder. Its diagnostic criteria include epistaxis, telangiectases in mucocutaneous sites, arteriovenous malformations (AVMs), and familial inheritance. HHT is transmitted as an autosomal dominant condition, caused in 85% of cases by mutations in either Endoglin (ENG) or Activin receptor-like kinase (ACVRL1/ACVRL1/ALK1) genes. Pathogenic mutations have been described in exons, splice junctions and, in a few cases with ENG mutations, in the proximal promoter, which creates a new ATG start site. However, no mutations affecting transcription regulation have been described to date in HHT, and this type of mutation is rarely identified in the literature on rare diseases.[Methods] Sequencing data from a family with HHT lead to single nucleotide change, c.-58G > A. The functionality and pathogenicity of this change was analyzed by in vitro mutagenesis, quantitative PCR and Gel shift assay. Student t test was used for statistical significance.[Results] A single nucleotide change, c.-58G > A, in the proximal ENG promoter co-segregated with HHT clinical features in an HHT family. This mutation was present in the proband and in 2 other symptomatic members, whereas 2 asymptomatic relatives did not harbor the mutation. Analysis of RNA from activated monocytes from the probands and the healthy brother revealed reduced ENG mRNA expression in the HHT patient (p = 0.005). Site-directed mutagenesis of the ENG promoter resulted in a three-fold decrease in luciferase activity of the mutant c.-58A allele compared to wild type (p = 0.005). Finally, gel shift assay identified a DNA-protein specific complex.[Conclusions] The novel ENG c.-58G > A substitution in the ENG promoter co-segregates with HHT symptoms in a family and appears to affect the transcriptional regulation of the gene, resulting in reduced ENG expression. ENG c.-58G > A may therefore be a pathogenic HHT mutation leading to haploinsufficiency of Endoglin and HHT symptoms. To the best of our knowledge, this is the first report of a pathogenic mutation in HHT involving the binding site for a transcription factor in the promoter of ENG.This study has been supported by grants from Ministerio de Economia y Competitividad of Spain (SAF2011-23475 and SAF2014-52374-R) to L.M. Botella and Centro de Investigación Biomedica en Red de Enfermedades Raras (CIBERER).Peer reviewe

    Characterization of the human Activin-A receptor type II-like kinase 1 (ACVRL1) promoter and its regulation by Sp1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Activin receptor-like kinase 1 (ALK1) is a Transforming Growth Factor-β (TGF-β) receptor type I, mainly expressed in endothelial cells that plays a pivotal role in vascular remodelling and angiogenesis. Mutations in the ALK1 gene (<it>ACVRL1</it>) give rise to Hereditary Haemorrhagic Telangiectasia, a dominant autosomal vascular dysplasia caused by a haploinsufficiency mechanism. In spite of its patho-physiological relevance, little is known about the transcriptional regulation of <it>ACVRL1</it>. Here, we have studied the different origins of <it>ACVRL1 </it>transcription, we have analyzed <it>in silico </it>its 5'-proximal promoter sequence and we have characterized the role of Sp1 in the transcriptional regulation of <it>ACVRL1</it>.</p> <p>Results</p> <p>We have performed a 5'Rapid Amplification of cDNA Ends (5'RACE) of <it>ACVRL1 </it>transcripts, finding two new transcriptional origins, upstream of the one previously described, that give rise to a new exon undiscovered to date. The 5'-proximal promoter region of <it>ACVRL1 </it>(-1,035/+210) was analyzed <it>in silico</it>, finding that it lacks TATA/CAAT boxes, but contains a remarkably high number of GC-rich Sp1 consensus sites. In cells lacking Sp1, <it>ACVRL1 </it>promoter reporters did not present any significant transcriptional activity, whereas increasing concentrations of Sp1 triggered a dose-dependent stimulation of its transcription. Moreover, silencing Sp1 in HEK293T cells resulted in a marked decrease of <it>ACVRL1 </it>transcriptional activity. Chromatin immunoprecipitation assays demonstrated multiple Sp1 binding sites along the proximal promoter region of <it>ACVRL1 </it>in endothelial cells. Furthermore, demethylation of CpG islands, led to an increase in <it>ACVRL1 </it>transcription, whereas <it>in vitro </it>hypermethylation resulted in the abolishment of Sp1-dependent transcriptional activation of <it>ACVRL1</it>.</p> <p>Conclusions</p> <p>Our results describe two new transcriptional start sites in <it>ACVRL1 </it>gene, and indicate that Sp1 is a key regulator of <it>ACVRL1 </it>transcription, providing new insights into the molecular mechanisms that contribute to the expression of <it>ACVRL1 </it>gene. Moreover, our data show that the methylation status of CpG islands markedly modulates the Sp1 regulation of <it>ACVRL1 </it>gene transcriptional activity.</p

    5'UTR mutations of ENG cause hereditary hemorrhagic telangiectasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary hemorrhagic telangiectasia (HHT) is a vascular disorder characterized by epistaxis, arteriovenous malformations, and telangiectases. The majority of the patients have a mutation in the coding region of the activin A receptor type II-like 1 (<it>ACVRL1</it>) or Endoglin (<it>ENG</it>) gene. However, in approximately 15% of cases, sequencing analysis and deletion/duplication testing fail to identify mutations in the coding regions of these genes. Knowing its vital role in transcription and translation control, we were prompted to investigate the 5'untranslated region (UTR) of <it>ENG</it>.</p> <p>Methods and Results</p> <p>We sequenced the 5'UTR of <it>ENG </it>for 154 HHT patients without mutations in <it>ENG </it>or <it>ACVRL1 </it>coding regions. We found a mutation (c.-127C > T), which is predicted to affect translation initiation and alter the reading frame of endoglin. This mutation was found in a family with linkage to the <it>ENG</it>, as well as in three other patients, one of which had an affected sibling with the same mutation. <it>In vitro </it>expression studies showed that a construct with the c.-127C > T mutation alters the translation and decreases the level of the endoglin protein. In addition, a c.-9G > A mutation was found in three patients, one of whom was homozygous for this mutation. Expression studies showed decreased protein levels suggesting that the c.-9G > A is a hypomorphic mutation.</p> <p>Conclusions</p> <p>Our results emphasize the need for the inclusion of the 5'UTR region of <it>ENG </it>in clinical testing for HHT.</p

    Mutation study of Spanish patients with Hereditary Hemorrhagic Telangiectasia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant and age-dependent vascular disorder characterised mainly by mutations in the Endoglin (ENG) or activin receptor-like kinase-1 (ALK1, ACVRL1) genes.</p> <p>Methods</p> <p>Here, we have identified 22 ALK1 mutations and 15 ENG mutations, many of which had not previously been reported, in independent Spanish families afflicted with HHT.</p> <p>Results</p> <p>We identified mutations in thirty-seven unrelated families. A detailed analysis of clinical symptoms was recorded for each patient analyzed, with a higher significant presence of pulmonary arteriovenous malformations (PAVM) in HHT1 patients over HHT2. Twenty-two mutations in ALK1 and fifteen in ENG genes were identified. Many of them, almost half, represented new mutations in ALK1 and in ENG. Missense mutations in ENG and ALK1 were localized in a tridimensional protein structure model.</p> <p>Conclusion</p> <p>Overall, ALK1 mutations (HHT2) were predominant over ENG mutations (HHT1) in our Spanish population, in agreement with previous data from our country and other Mediterranean countries (France, Italy), but different to Northern Europe or North America. There was a significant increase of PAVM associated with HHT1 over HHT2 in these families.</p

    MMP-12, Secreted by Pro-Inflammatory Macrophages, Targets Endoglin in Human Macrophages and Endothelial Cells

    Get PDF
    Upon inflammation, monocyte-derived macrophages (MF) infiltrate blood vessels to regulate several processes involved in vascular pathophysiology. However, little is known about the mediators involved. Macrophage polarization is crucial for a fast and e cient initial response (GM-MF) and a good resolution (M-MF) of the inflammatory process. The functional activity of polarized MF is exerted mainly through their secretome, which can target other cell types, including endothelial cells. Endoglin (CD105) is a cell surface receptor expressed by endothelial cells and MF that is markedly upregulated in inflammation and critically involved in angiogenesis. In addition, a soluble form of endoglin with anti-angiogenic activity has been described in inflammation-associated pathologies. The aim of this work was to identify components of the MF secretome involved in the shedding of soluble endoglin. We find that the GM-MF secretome contains metalloprotease 12 (MMP-12), a GM-MF specific marker that may account for the anti-angiogenic activity of the GM-MF secretome. Cell surface endoglin is present in both GM-MF and M-MF, but soluble endoglin is only detected in GM-MF culture supernatants. Moreover, MMP-12 is responsible for the shedding of soluble endoglin in vitro and in vivo by targeting membrane-bound endoglin in both MF and endothelial cells. These data demonstrate a direct correlation between GM-MF polarization, MMP-12, and soluble endoglin expression and function. By targeting endothelial cells, MMP-12 may represent a novel mediator involved in vascular homeostasis.Ministerio de Ciencia, Innovación y Universidades of Spain (SAF2013-43421-R to C.B.; SAF2017-83785-R and SAF2014-23801 to A.L.C.)Consejo Superior de Investigaciones Cientificas (201920E022 to C.B.)Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER; ISCIII-CB06/07/0038 to C.B.)Czech Republic Specific University Research (SVV-260414 to P.N.)CIBERER is an initiative of the Instituto de Salud Carlos III (ISCIII) of Spain supported by FEDER fundsM.A. was funded with a fellowship from Ministerio de Ciencia e Innovación (BES-2008-003888)M.V. was supported by a short-term mobility fellowship from the European Erasmus Programm

    Transcription factors Sp1 and p73 control the expression of the proapoptotic protein NOXA in the response of testicular embryonal carcinoma cells to cisplatin

    Get PDF
    Testicular germ cell tumors (TGCTs) are highly responsive to and curable by cisplatin-based chemotherapy even in advanced stages. We have studied the molecular mechanisms involved in the induction of apoptosis in response to cisplatin, and found that proapoptotic Noxa is transcriptionally up-regulated following cisplatin exposure, even in the absence of p53, in NTERA2 cisplatin-sensitive cells but not in 1411HP-resistant cells. Blockade of Noxa reduced the apoptotic response of embryonal carcinoma (EC) NTERA2 cells to cisplatin. A detailed analysis of the Noxa promoter revealed that p73 and Sp1-like factors, Sp1 and KLF6, played key roles in the transcriptional control of this gene. Overexpression of TAp73 induced Noxa whereas the dominant negative isoform ΔNp73, reduced the levels of Noxa after cisplatin exposure in NTERA2 and 2102EP. Interestingly, down-regulation of Sp1 increased Noxa expression in response to cisplatin. However, blockade of KLF6 decreased cisplatin-induced up-regulation of Noxa in EC cell lines. In addition, tissue microarray analyses of TGCTs revealed that expression of Noxa correlates with good clinical prognosis in patients with embryonal carcinoma. Thus, our data show the transcriptional network that regulates Noxa in EC cells, which is key for their apoptotic response to cisplatin-based chemotherapy, and propose Noxa as a predictive factor of therapeutic response

    BMP9 Mutations Cause a Vascular-Anomaly Syndrome with Phenotypic Overlap with Hereditary Hemorrhagic Telangiectasia

    Get PDF
    Hereditary hemorrhagic telangiectasia (HHT), the most common inherited vascular disorder, is caused by mutations in genes involved in the transforming growth factor beta (TGF-β) signaling pathway (ENG, ACVRL1, and SMAD4). Yet, approximately 15% of individuals with clinical features of HHT do not have mutations in these genes, suggesting that there are undiscovered mutations in other genes for HHT and possibly vascular disorders with overlapping phenotypes. The genetic etiology for 191 unrelated individuals clinically suspected to have HHT was investigated with the use of exome and Sanger sequencing; these individuals had no mutations in ENG, ACVRL1, and SMAD4. Mutations in BMP9 (also known as GDF2) were identified in three unrelated probands. These three individuals had epistaxis and dermal lesions that were described as telangiectases but whose location and appearance resembled lesions described in some individuals with RASA1-related disorders (capillary malformation-arteriovenous malformation syndrome). Analyses of the variant proteins suggested that mutations negatively affect protein processing and/or function, and a bmp9-deficient zebrafish model demonstrated that BMP9 is involved in angiogenesis. These data confirm a genetic cause of a vascular-anomaly syndrome that has phenotypic overlap with HHT

    Mutation study of Spanish patients with hereditary hemorrhagic telangiectasia and expression analysis of Endoglin and ALK1

    Get PDF
    10 páginas, 2 figuras, 1 tabla -- PAGS nro. 295Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant and age-dependent vascular disorder originated by mutations in Endoglin (ENG) or activin receptor-like kinase-1 (ALK1, ACVRL1) genes. The first large series HHT analysis in Spanish population has identified mutations in 17 unrelated families. Ten different mutations in ALK1 and six in ENG genes were found. Six unrelated families had a mutation in ENG gene, four representing new mutations, p.Y258fs, pV323fs, p.F279fs (c.834_837del CTTC), and p.F279fsdupC. Eleven unrelated families harboured mutations in ALK1; ten were new mutations identified as p.H328P, p.R145fs, p.G68C, p.A377T, p.H297R, p.M376T, p.C36Y, p.H328P, p.T82del and p.R47P. Overall, ALK1 mutations (HHT2) were predominant over ENG mutations (HHT1), in agreement with data reported for other Mediterranean countries (France, Italy), but at variance with Northern Europe or North America. Endoglin expression in HHT1 or HHT2 activated monocytes and blood outgrowth endothelial cells (BOECs) from older patients was well below the theoretical 50% level expected from the HHT1 haploinsufficiency model, suggesting that the pathogenic endoglin haploinsufficiency leading to the HHT phenotype is age-dependent. Interestingly, ALK1 protein levels of HHT BOECs in some missense ALK1 mutants were similar to controls. In vitro expression of these ALK1 constructs suggests that, in addition to the haploinsufficiency model, certain ALK1 mutants may inhibit the function of the wild type alleleAuthors are indebted to Drs. Michelle Letarte and Ursula Cymerman for suggestions on methods of HHT patient sequencing, Dr. Kohei Miyazono for ALK1 constructs, Carmen Langa for technical assistance, Prof. Ginevra Guanti for hosting in her lab to A.F-L. and L.M.B., and to all the volunteers and HHT patients for their collaboration. A.F-L is a predoctoral fellow of I3P Program from Ministerio de Educación y Ciencia, SpainPeer reviewe
    corecore