3,390 research outputs found
Effect of high frequency ultrasounds on lycopene and total phenolic concentration, antioxidant properties and α-glucosidase inhibitory activity of tomato juice
Tomato juice was subjected to high frequency ultrasounds(378 and 583 kHz)at increasing energy densities (up to 250 MJ/m3). Results relevant to the treatments at high frequency providing an energy density of 250 MJ/m3 were compared with those obtained at 24 kHz delivering the same energy density. Lycopene and total phenolic concentration, as well as the α-glucosidase inhibitory activityof tomato juice, were not affected by ultrasound regardless the frequency and energy density. However, the antioxidant properties were negatively affected by high frequency ultrasounds
Use of time-resolved fluorescence to monitor bioactive compounds in plant based foodstuffs
The study of compounds that exhibit antioxidant activity has recently received much interest in the food industry because of their potential health benefits. Most of these compounds are plant based, such as polyphenolics and carotenoids, and there is a need to monitor them from the field through processing and into the body. Ideally, a monitoring technique should be non-invasive with the potential for remote capabilities. The application of the phenomenon of fluorescence has proved to be well suited, as many plant associated compounds exhibit fluorescence. The photophysical behaviour of fluorescent molecules is also highly dependent on their microenvironment, making them suitable probes to monitor changes in pH, viscosity and polarity, for example. Time-resolved fluorescence techniques have recently come to the fore, as they offer the ability to obtain more information, coupled with the fact that the fluorescence lifetime is an absolute measure, while steady state just provides relative and average information. In this work, we will present illustrative time-resolved measurements, rather than a comprehensive review, to show the potential of time-resolved fluorescence applied to the study of bioactive substances. The aim is to help assess if any changes occur in their form, going from extraction via storage and cooking to the interaction with serum albumin, a principal blood transport protein
Correcting the polarization effect in low frequency Dielectric Spectroscopy
We demonstrate a simple and robust methodology for measuring and analyzing
the polarization impedance appearing at interface between electrodes and ionic
solutions, in the frequency range from 1 to Hz. The method assumes no
particular behavior of the electrode polarization impedance and it only makes
use of the fact that the polarization effect dies out with frequency. The
method allows a direct and un-biased measurement of the polarization impedance,
whose behavior with the applied voltages and ionic concentration is
methodically investigated. Furthermore, based on the previous findings, we
propose a protocol for correcting the polarization effect in low frequency
Dielectric Spectroscopy measurements of colloids. This could potentially lead
to the quantitative resolution of the -dispersion regime of live cells
in suspension
De triggertheorie voor codewisseling: De oorspronkelijke en een aangepaste versie (‘The trigger theory for codeswitching: The original and an adjusted version’).
Modeling and predicting the shape of the far-infrared to submillimeter emission in ultra-compact HII regions and cold clumps
Dust properties are very likely affected by the environment in which dust
grains evolve. For instance, some analyses of cold clumps (7 K- 17 K) indicate
that the aggregation process is favored in dense environments. However,
studying warm (30 K-40 K) dust emission at long wavelength (300
m) has been limited because it is difficult to combine far
infared-to-millimeter (FIR-to-mm) spectral coverage and high angular resolution
for observations of warm dust grains. Using Herschel data from 70 to 500
m, which are part of the Herschel infrared Galactic (Hi-GAL) survey
combined with 1.1 mm data from the Bolocam Galactic Plane Survey (BGPS), we
compared emission in two types of environments: ultra-compact HII (UCHII)
regions, and cold molecular clumps (denoted as cold clumps). With this
comparison we tested dust emission models in the FIR-to-mm domain that
reproduce emission in the diffuse medium, in these two environments (UCHII
regions and cold clumps). We also investigated their ability to predict the
dust emission in our Galaxy. We determined the emission spectra in twelve UCHII
regions and twelve cold clumps, and derived the dust temperature (T) using the
recent two-level system (TLS) model with three sets of parameters and the
so-called T- (temperature-dust emissvity index) phenomenological models,
with set to 1.5, 2 and 2.5. We tested the applicability of the TLS
model in warm regions for the first time. This analysis indicates distinct
trends in the dust emission between cold and warm environments that are visible
through changes in the dust emissivity index. However, with the use of standard
parameters, the TLS model is able to reproduce the spectral behavior observed
in cold and warm regions, from the change of the dust temperature alone,
whereas a T- model requires to be known.Comment: Accepted for publication in A&A. 19 pages, 8 figures, 7 table
The Structure of a Low-Metallicity Giant Molecular Cloud Complex
To understand the impact of low metallicities on giant molecular cloud (GMC)
structure, we compare far infrared dust emission, CO emission, and dynamics in
the star-forming complex N83 in the Wing of the Small Magellanic Cloud. Dust
emission (measured by Spitzer as part of the S3MC and SAGE-SMC surveys) probes
the total gas column independent of molecular line emission and traces
shielding from photodissociating radiation. We calibrate a method to estimate
the dust column using only the high-resolution Spitzer data and verify that
dust traces the ISM in the HI-dominated region around N83. This allows us to
resolve the relative structures of H2, dust, and CO within a giant molecular
cloud complex, one of the first times such a measurement has been made in a
low-metallicity galaxy. Our results support the hypothesis that CO is
photodissociated while H2 self-shields in the outer parts of low-metallicity
GMCs, so that dust/self shielding is the primary factor determining the
distribution of CO emission. Four pieces of evidence support this view. First,
the CO-to-H2 conversion factor averaged over the whole cloud is very high 4-11
\times 10^21 cm^-2/(K km/s), or 20-55 times the Galactic value. Second, the
CO-to-H2 conversion factor varies across the complex, with its lowest (most
nearly Galactic) values near the CO peaks. Third, bright CO emission is largely
confined to regions of relatively high line-of-sight extinction, A_V >~ 2 mag,
in agreement with PDR models and Galactic observations. Fourth, a simple model
in which CO emerges from a smaller sphere nested inside a larger cloud can
roughly relate the H2 masses measured from CO kinematics and dust.Comment: 17 pages, 10 figures (including appendix), accepted for publication
in the Astrophysical Journa
- …
