924 research outputs found

    Density Functional Theory of the Hubbard-Holstein Model

    Full text link
    We present a density functional theory (DFT) for lattice models with local electron-electron (e-e) and electron-phonon (e-ph) interactions. Exchange-correlation potentials are derived via dynamical mean field theory for the infinite-dimensional Bethe lattice, and analytically for an isolated Hubbard-Holstein site. These potentials exhibit discontinuities as a function of the density, which depend on the relative strength of the e-e and e-ph interactions. By comparing to exact benchmarks, we show that the DFT formalism gives a good description of the linear conductance and real-time dynamics.Comment: 5 pages, 3 figures, supplemental material provided as pd

    Nonequilibrium Green's functions and atom-surface dynamics: Simple views from a simple model system

    Full text link
    We employ Non-equilibrium Green's functions (NEGF) to describe the real-time dynamics of an adsorbate-surface model system exposed to ultrafast laser pulses. For a finite number of electronic orbitals, the system is solved exactly and within different levels of approximation. Specifically i) the full exact quantum mechanical solution for electron and nuclear degrees of freedom is used to benchmark ii) the Ehrenfest approximation (EA) for the nuclei, with the electron dynamics still treated exactly. Then, using the EA, electronic correlations are treated with NEGF within iii) 2nd Born and with iv) a recently introduced hybrid scheme, which mixes 2nd Born self-energies with non-perturbative, local exchange-correlation potentials of Density Functional Theory (DFT). Finally, the effect of a semi-infinite substrate is considered: we observe that a macroscopic number of de-excitation channels can hinder desorption. While very preliminary in character and based on a simple and rather specific model system, our results clearly illustrate the large potential of NEGF to investigate atomic desorption, and more generally, the non equilibrium dynamics of material surfaces subject to ultrafast laser fields.Comment: 10 pages, 5 figure

    Non-Perturbative Theory for Dispersion Self-Energy of Atoms

    Full text link
    We go beyond the approximate series-expansions used in the dispersion theory of finite size atoms. We demonstrate that a correct, and non-perturbative, theory dramatically alters the dispersion selfenergies of atoms. The non-perturbed theory gives as much as 100% corrections compared to the traditional series expanded theory for the smaller noble gas atoms.Comment: 3 pages, no figures, 1 tabl

    Casimir attractive-repulsive transition in MEMS

    Full text link
    Unwanted stiction in micro- and nanomechanical (NEMS/MEMS) systems due to dispersion (van der Waals, or Casimir) forces is a significant hurdle in the fabrication of systems with moving parts on these length scales. Introducing a suitably dielectric liquid in the interspace between bodies has previously been demonstrated to render dispersion forces repulsive, or even to switch sign as a function of separation. Making use of recently available permittivity data calculated by us we show that such a remarkable non-monotonic Casimir force, changing from attractive to repulsive as separation increases, can in fact be observed in systems where constituent materials are in standard NEMS/MEMS use requiring no special or exotic materials. No such nonmonotonic behaviour has been measured to date. We calculate the force between a silica sphere and a flat surface of either zinc oxide or hafnia, two materials which are among the most prominent for practical microelectrical and microoptical devices. Our results explicate the need for highly accurate permittivity functions of the materials involved for frequencies from optical to far-infrared frequencies. A careful analysis of the Casimir interaction is presented, and we show how the change in the sign of the interaction can be understood as a result of multiple crossings of the dielectric functions of the three media involved in a given set-up.Comment: 6 pages, 4 figure

    Non-Perturbative Theory of Dispersion Interactions

    Get PDF
    Some open questions exist with fluctuation-induced forces between extended dipoles. Conventional intuition derives from large-separation perturbative approximations to dispersion force theory. Here we present a full non-perturbative theory. In addition we discuss how one can take into account finite dipole size corrections. It is of fundamental value to investigate the limits of validity of the perturbative dispersion force theory.Comment: 9 pages, no figure

    Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows

    Get PDF
    Although seagrasses cover only a minor fraction of the ocean seafloor, their carbon sink capacity accounts for nearly one-fifth of the total oceanic carbon burial and thus play a critical structural and functional role in many coastal ecosystems. We sampled 10 eelgrass (<i>Zostera marina</i>) meadows in Finland and 10 in Denmark to explore seagrass carbon stocks (C<sub>org</sub> stock) and carbon accumulation rates (C<sub>org</sub> accumulation) in the Baltic Sea area. The study sites represent a gradient from sheltered to exposed locations in both regions to reflect expected minimum and maximum stocks and accumulation. The C<sub>org</sub> stock integrated over the top 25 cm of the sediment averaged 627 g C m<sup>−2</sup> in Finland, while in Denmark the average C<sub>org</sub> stock was over 6 times higher (4324 g C m<sup>−2</sup>). A conservative estimate of the total organic carbon pool in the regions ranged between 6.98 and 44.9 t C ha<sup>−1</sup>. Our results suggest that the Finnish eelgrass meadows are minor carbon sinks compared to the Danish meadows, and that majority of the C<sub>org</sub> produced in the Finnish meadows is exported. Our analysis further showed that &gt; 40 % of the variation in the C<sub>org</sub> stocks was explained by sediment characteristics, i.e. dry density, porosity and silt content. In addition, our analysis show that the root : shoot ratio of <i>Z. marina</i> explained &gt; 12 % and the contribution of <i>Z. marina</i> detritus to the sediment surface C<sub>org</sub> pool explained &gt; 10 % of the variation in the C<sub>org</sub> stocks. The mean monetary value for the present carbon storage and carbon sink capacity of eelgrass meadows in Finland and Denmark, were 281 and 1809 EUR ha<sup>−1</sup>, respectively. For a more comprehensive picture of seagrass carbon storage capacity, we conclude that future blue carbon studies should, in a more integrative way, investigate the interactions between sediment biogeochemistry, seascape structure, plant species architecture and the hydrodynamic regime

    Role of food web interactions in promoting resilience to nutrient enrichment in a brackish water eelgrass (Zostera marina) ecosystem

    Get PDF
    Understanding the ecological interactions that enhance the resilience of threatened ecosystems is essential in assuring their conservation and restoration. Top-down trophic interactions can increase resilience to bottom-up nutrient enrichment, however, as many seagrass ecosystems are threatened by both eutrophication and trophic modifications, understanding how these processes interact is important. Using a combination of approaches, we explored how bottom-up and top-down processes, acting individually or in conjunction, can affect eelgrass meadows and associated communities in the northern Baltic Sea. Field surveys along with fish diet and stable isotope analyses revealed that the eelgrass trophic network included two main top predatory fish species, each of which feeds on a separate group of invertebrate mesograzers (crustaceans or gastropods). Mesograzer abundance in the study area was high, and capable of mitigating the effects of increased algal biomass that resulted from experimental nutrient enrichment in the field. When crustacean mesograzers were experimentally excluded, gastropod mesograzers were able to compensate and limit the effects of nutrient enrichment on eelgrass biomass and growth. Our results suggest that top-down processes (i.e., suppression of algae by different mesograzer groups) may ensure eelgrass resilience to nutrient enrichment in the northern Baltic Sea, and the existence of multiple trophic pathways can provide additional resilience in the face of trophic modifications. However, the future resilience of these meadows is likely threatened by additional local stressors and global environmental change. Understanding the trophic links and interactions that ensure resilience is essential for managing and conserving these important ecosystems and the services they provide

    Violation of the Nernst heat theorem in the theory of thermal Casimir force between Drude metals

    Full text link
    We give a rigorous analytical derivation of low-temperature behavior of the Casimir entropy in the framework of the Lifshitz formula combined with the Drude dielectric function. An earlier result that the Casimir entropy at zero temperature is not equal to zero and depends on the parameters of the system is confirmed, i.e. the third law of thermodynamics (the Nernst heat theorem) is violated. We illustrate the resolution of this thermodynamical puzzle in the context of the surface impedance approach by several calculations of the thermal Casimir force and entropy for both real metals and dielectrics. Different representations for the impedances, which are equivalent for real photons, are discussed. Finally, we argue in favor of the Leontovich boundary condition which leads to results for the thermal Casimir force that are consistent with thermodynamics.Comment: 24 pages, 3 figures, accepted for publication in Phys. Rev.
    • …
    corecore