5 research outputs found

    Engraftment of engineered ES cell–derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium

    Get PDF
    Cellular cardiomyoplasty is an attractive option for the treatment of severe heart failure. It is, however, still unclear and controversial which is the most promising cell source. Therefore, we investigated and examined the fate and functional impact of bone marrow (BM) cells and embryonic stem cell (ES cell)–derived cardiomyocytes after transplantation into the infarcted mouse heart. This proved particularly challenging for the ES cells, as their enrichment into cardiomyocytes and their long-term engraftment and tumorigenicity are still poorly understood. We generated transgenic ES cells expressing puromycin resistance and enhanced green fluorescent protein cassettes under control of a cardiac-specific promoter. Puromycin selection resulted in a highly purified (>99%) cardiomyocyte population, and the yield of cardiomyocytes increased 6–10-fold because of induction of proliferation on purification. Long-term engraftment (4–5 months) was observed when co-transplanting selected ES cell–derived cardiomyocytes and fibroblasts into the injured heart of syngeneic mice, and no teratoma formation was found (n = 60). Although transplantation of ES cell–derived cardiomyocytes improved heart function, BM cells had no positive effects. Furthermore, no contribution of BM cells to cardiac, endothelial, or smooth muscle neogenesis was detected. Hence, our results demonstrate that ES-based cell therapy is a promising approach for the treatment of impaired myocardial function and provides better results than BM-derived cells

    Comparison of Myocardial Remodeling between Cryoinfarction and Reperfused Infarction in Mice

    Get PDF
    Myocardial infarction is associated with inflammatory reaction leading to tissue remodeling. We compared tissue remodeling between cryoinfarction (cMI) and reperfused myocardial infarction (MI) in order to better understand the local environment where we apply cell therapies. Models of closed-chest one-hour ischemia/reperfusion MI and cMI were used in C57/Bl6-mice. The reperfused MI showed rapid development of granulation tissue and compacted scar formation after 7 days. In contrast, cMI hearts showed persistent cardiomyocyte debris and cellular infiltration after 7 days and partially compacted scar formation accompanied by persistent macrophages and myofibroblasts after 14 days. The mRNA of proinflammatory mediators was transiently induced in MI and persistently upregulated in cMI. Tenascin C and osteopontin-1 showed delayed induction in cMI. In conclusion, the cryoinfarction was associated with prolonged inflammation and active myocardial remodeling when compared to the reperfused MI. These substantial differences in remodeling may influence cellular engraftment and should be considered in cell therapy studies

    Potential risks of bone marrow cell transplantation into infarcted hearts

    No full text
    Cellular replacement therapy has emerged as a novel strategy for the treatment of heart failure. The aim of our study was to determine the fate of injected mesenchymal stem cells (MSCs) and whole bone marrow (BM) cells in the infarcted heart. MSCs were purified from BM of transgenic mice and characterized using flow cytometry and in vitro differentiation assays. Myocardial infarctions were generated in mice and different cell populations including transgenic MSCs, unfractionated BM cells, or purified hematopoietic progenitors were injected. Encapsulated structures were found in the infarcted areas of a large fraction of hearts after injecting MSCs (22 of 43, 51.2%) and unfractionated BM cells (6 of 46, 13.0%). These formations contained calcifications and/or ossifications. In contrast, no pathological abnormalities were found after injection of purified hematopoietic progenitors (0 of 5, 0.0%), fibroblasts (0 of 5, 0.0%), vehicle only (0 of 30, 0.0%), or cytokine-induced mobilization of BM cells (0 of 35, 0.0%). We conclude that the developmental fate of BM-derived cells is not restricted by the surrounding tissue after myocardial infarction and that the MSC fraction underlies the extended bone formation in the infarcted myocardium. These findings seriously question the biologic basis and clinical safety of using whole BM and in particular MSCs to treat nonhematopoietic disorders
    corecore