203 research outputs found

    Text-mining and ontologies: new approaches to knowledge discovery of microbial diversity

    Full text link
    Microbiology research has access to a very large amount of public information on the habitats of microorganisms. Many areas of microbiology research uses this information, primarily in biodiversity studies. However the habitat information is expressed in unstructured natural language form, which hinders its exploitation at large-scale. It is very common for similar habitats to be described by different terms, which makes them hard to compare automatically, e.g. intestine and gut. The use of a common reference to standardize these habitat descriptions as claimed by (Ivana et al., 2010) is a necessity. We propose the ontology called OntoBiotope that we have been developing since 2010. The OntoBiotope ontology is in a formal machine-readable representation that enables indexing of information as well as conceptualization and reasoning.Comment: 5 page

    Information extraction from bibliography for Marker Assisted Selection in wheat

    Get PDF
    Improvement of most animal and plant species of agronomical interest in the near future has become an international stake because of the increasing demand for feeding a growing world population and to mitigate the reduction of the industrial resources. The recent advent of genomic tools contributed to improve the discovery of linkage between molecular markers and genes that are involved in the control of traits of agronomical interest such as grain number or disease resistance. This information is mostly published as scientific papers but rarely available in databases. Here, we present a method aiming at automatically extract this information from the scientific literature and relying on a knowledge model of the target information and on the WheatPhenotype ontology that we developed for this purpose. The information extraction results were evaluated and integrated into the on-line semantic search engine [i]AlvisIR WheatMarker.[/i

    BioNLP Shared Task 2011 - Bacteria Gene Interactions and Renaming

    No full text
    Document Type : Proceedings Paper Conference Date : JUN 23-24, 2011 Conference Location : Portland, ORInternational audienceWe present two related tasks of the BioNLP Shared Tasks 2011: Bacteria Gene Renaming (Rename) and Bacteria Gene Interactions (GI). We detail the objectives, the corpus specification, the evaluation metrics, and we summarize the participants' results. Both issued from PubMed scientific literature abstracts, the Rename task aims at extracting gene name synonyms, and the GI task aims at extracting genic interaction events, mainly about gene transcriptional regulations in bacteria

    Thesaurus Enrichment via Coordination Extraction

    Get PDF
    International audienceWe advance a method of thesaurus enrichment, based on the extraction of coordinations in a domain-related corpus. Our hypothesis is that there is a semantic homogeneity between the conjuncts located in a coordination. We conducted an experiment that allowed us to evaluate the effectiveness of our method. This experiment aims to enrich the concept hierarchy of a French agricultural thesaurus named French Crop Usage (FCU), thanks to the texts of the Plant Health Bulletins (PHB). The FCU thesaurus is published on the Web using the SKOS model

    BioNLP Shared Task - The Bacteria Track

    Get PDF
    Background: We present the BioNLP 2011 Shared Task Bacteria Track, the first Information Extraction challenge entirely dedicated to bacteria. It includes three tasks that cover different levels of biological knowledge. The Bacteria Gene Renaming supporting task is aimed at extracting gene renaming and gene name synonymy in PubMed abstracts. The Bacteria Gene Interaction is a gene/protein interaction extraction task from individual sentences. The interactions have been categorized into ten different sub-types, thus giving a detailed account of genetic regulations at the molecular level. Finally, the Bacteria Biotopes task focuses on the localization and environment of bacteria mentioned in textbook articles. We describe the process of creation for the three corpora, including document acquisition and manual annotation, as well as the metrics used to evaluate the participants' submissions. Results: Three teams submitted to the Bacteria Gene Renaming task; the best team achieved an F-score of 87%. For the Bacteria Gene Interaction task, the only participant's score had reached a global F-score of 77%, although the system efficiency varies significantly from one sub-type to another. Three teams submitted to the Bacteria Biotopes task with very different approaches; the best team achieved an F-score of 45%. However, the detailed study of the participating systems efficiency reveals the strengths and weaknesses of each participating system. Conclusions: The three tasks of the Bacteria Track offer participants a chance to address a wide range of issues in Information Extraction, including entity recognition, semantic typing and coreference resolution. We found commond trends in the most efficient systems: the systematic use of syntactic dependencies and machine learning. Nevertheless, the originality of the Bacteria Biotopes task encouraged the use of interesting novel methods and techniques, such as term compositionality, scopes wider than the sentence
    • …
    corecore