369 research outputs found

    Hydrodynamic stress on fractal aggregates of spheres

    Get PDF
    We calculate the average hydrodynamic stress on fractal aggregates of spheres using Stokesian dynamics. We find that for fractal aggregates of force-free particles, the stress does not grow as the cube of the radius of gyration, but rather as the number of particles in the aggregate. This behavior is only found for random aggregates of force-free particles held together by hydrodynamic lubrication forces. The stress on aggregates of particles rigidly connected by interparticle forces grows as the radius of gyration cubed. We explain this behavior by examining the transmission of the tension along connecting lines in an aggregate and use the concept of a persistance length in order to characterize this stress transmission within an aggregate

    Self-diffusion of Brownian particles in concentrated suspensions under shear

    Get PDF
    The self-diffusivity of Brownian hard spheres in a simple shear flow is studied by numerical simulation. Particle trajectories are calculated by Stokesian dynamics, with an accurate representation of the suspension hydrodynamics that includes both many-body interactions and lubrication. The simulations are of a monolayer of identical spheres as a function of the Péclet number: Pe =gamma-dot a^2/D0, which measures the relative importance of shear and Brownian forces. Here gamma-dot is the shear rate, a the particle radius, and D0 the diffusion coefficient of a single sphere at infinite dilution. In the absence of shear, using only hydrodynamic interactions, the simulations reproduce the pair-distribution function of the equivalent hard-disk system. Both short- and long-time self-diffusivities are determined as a function of the Péclet number. The results show a clear transition from a Brownian motion dominated regime (Pe10) with a dramatic change in the behavior of the long-time self-diffusivity

    The rheology of Brownian suspensions

    Get PDF
    The viscosity of a suspension of spherical Brownian particles is determined by Stokesian dynamics as a function of the Péclet number. Several new aspects concerning the theoretical derivation of the direct contribution of the Brownian motion to the bulk stress are given, along with the results obtained from a simulation of a monolayer. The simulations reproduce the experimental behavior generally observed in dense suspensions, and an explanation of this behavior is given by observing the evolution of the different contributions to the viscosity with shear rate. The shear thinning at low Péclet numbers is due to the disappearance of the direct Brownian contribution to the viscosity; the deformation of the equilibrium microstructure is, however, small. By contrast, at very high Péclet numbers the suspension shear thickens due to the formation of large clusters

    Variabilité protéique observée par électrophorèse bidimensionnelle sur neuf isolats d'Heterodera schachtii provenant de six pays européens et sur deux isolats d'H. trifolii f.sp. beta

    Get PDF
    La variabilité protéique de neuf isolats européens d'#Heterodera schachtii et de deux isolats d'#H. trifolii f. sp. #beta élevés en conditions contrôlées sur colza, #Brassica napus L. var. #napus$ cv. Samouraï a été étudiée par électrophorèse bidimensionnelle (E2D). Les gels électrophorétiques sont comparés à l'aide d'un système informatique d'analyse d'images. Les indices de similarité (F) et les distances génétiques (D = 1-F) sont calculés à partir des taches homologues. Le dendrogramme est obtenu avec la méthode UPGMA. Les résultats montrent une assez grande similitude protéique des deux espèces. Les principales différences interspécifiques sont mises en évidence, ainsi que deux zones communes caractéristiques. Concernant la variabilité infraspécifique, des taches caratéristiques de certains isolats ont été repérées. La possibilité d'utiliser l'E2D pour identifier des protéines liées à la virulence est envisagée, ce qui nécessitera l'étude d'un grand nombre d'isolats. (Résumé d'auteur

    Hydrodynamic transport properties of hard-sphere dispersions. II. Porous media

    Get PDF
    The hydrodynamic transport properties of hard-sphere dispersions are calculated for volume fractions (φ) spanning the dilute limit up to the fluid–solid transition at φ=0.49. Particle distributions are generated by a Monte Carlo technique and the hydrodynamic interactions are calculated by Stokesian dynamics simulation. The effects of changing the number of particles in the simulation cell are investigated, and the scaling laws for the finite-size effects are determined. The effects of using various levels of approximation in computing both the far- and near-field hydrodynamic interactions are also examined. The transport properties associated with porous media—permeabilities and hindered diffusion coefficients—are determined here. The corresponding properties of freely mobile suspensions are determined in a companion paper [Phys. Fluids 31, 3462 (1988)]

    Hydrodynamic transport properties of hard-sphere dispersions. I. Suspensions of freely mobile particles

    Get PDF
    The hydrodynamic transport properties of hard-sphere dispersions are calculated for volume fractions (φ) spanning the dilute limit up to the fluid–solid transition at φ=0.49. Particle distributions are generated by a Monte Carlo technique and the hydrodynamic interactions are calculated by Stokesian dynamics simulation. The effects of changing the number of particles in the simulation cell are investigated, and the scaling laws for the finite-size effects are derived. The effects of using various levels of approximation in computing both the far- and near-field hydrodynamic interactions are also examined. The transport properties associated with freely mobile suspensions—sedimentation velocities, self-diffusion coefficients, and effective viscosities—are determined here, while the corresponding properties of porous media are determined in a companion paper [Phys. Fluids 31, 3473 (1988)]. Comparison of the simulation results is made with both experiment and theory. In particular, the short-time self-diffusion coefficients and the suspension viscosities are in excellent agreement with experiment

    Kinetics of internal structures growth in magnetic suspensions

    Get PDF
    The kinetics of aggregation of non Brownian magnetizable particles in the presence of a magnetic field is studied both theoretically and by means of computer simulations. A theoretical approach is based on a system of Smoluchowski equations for the distribution function of the number of particles in linear chain-like aggregates. Results obtained in the two dimensional (2D) and three dimensional (3D) models are analyzed in relation with the size of the cell, containing the particles, and the particle volume fraction φ. The theoretical model reproduces the change of the aggregation kinetics with the size of the cell and with the particle volume fraction as long as the lateral aggregation of chains is negligible. The simulations show that lateral aggregation takes place when, roughly, φ2D>5% and φ3D>1.5%. Dependence of the average size of the chains with time can be described by a power law; the corresponding exponent decreases with the particle volume fraction in relation with the lateral aggregation. In the 3D simulations, dense labyrinthine-like structures, aligned along the applied field, are observed when the particle concentration is high enough (φ3D>5%). © 2012 Elsevier B.V. All rights reserved

    Statistical-mechanical theory of the overall magnetic properties of mesocrystals

    Full text link
    The mesocrystal showing both electrorheological and magnetorheological effects is called electro-magnetorheological (EMR) solids. Prediction of the overall magnetic properties of the EMR solids is a challenging task due to the coexistence of the uniaxially anisotropic behavior and structural transition as well as long-range interaction between the suspended particles. To consider the uniaxial anisotropy effect, we present an anisotropic Kirkwood-Fr\"{o}hlich equation for calculating the effective permeabilities by adopting an explicit characteristic spheroid rather than a characteristic sphere used in the derivation of the usual Kirkwood-Fr\"{o}hlich equation. Further, by applying an Ewald-Kornfeld formulation we are able to investigate the effective permeability by including the structural transition and long-range interaction explicitly. Our theory can reduce to the usual Kirkwood-Fr\"{o}hlich equation and Onsager equation naturally. To this end, the numerical simulation shows the validity of monitoring the structure of EMR solids by detecting their effective permeabilities.Comment: 14 pages, 1 figur

    Normal stresses in a shear flow of magnetorheological suspensions: viscoelastic versus Maxwell stresses

    Get PDF
    International audienceThis work reports an experimental and theoretical study on the normal force developed by suspensions of magnetic microparticles subjected to magnetic fields. Experimental values of the normal force were obtained using a rotational rheometer, for a broad range of particle concentration in the suspensions. Applied magnetic fields up to 343 kA/m were generated in the plate-plate measuring geometry. It was found that the normal force exhibited a high-value plateau at low shear, followed by a decrease as the suspensions started to flow and a final low-value plateau at high shear. These three regions in the normal force vs. shear rate curve were well correlated with the microscopic regimes in the suspensions: field-aligned structures filling the gap; inclined structures still filling the gap; and structures non-filling the gap. The theoretical model developed is based on the equilibrium between hydrodynamic and magnetostatic torques and forces in a field-induced aggregate of particles subjected to shear. The stress tensor was obtained and the normal force calculated as the integral of the stress over the total surface of the rotational plate. A good correspondence among theoretical and experimental values was obtained

    Dynamic simulation of hydrodynamically interacting particles

    Get PDF
    A general method for computing the hydrodynamic interactions among N suspended particles, under the condition of vanishingly small particle Reynolds number, is presented. The method accounts for both near-field lubrication effects and the dominant many-body interactions. The many-body hydrodynamic interactions reproduce the screening characteristic of porous media and the ‘effective viscosity’ of free suspensions. The method is accurate and computationally efficient, permitting the dynamic simulation of arbitrarily configured many-particle systems. The hydrodynamic interactions calculated are shown to agree well with available exact calculations for small numbers of particles and to reproduce slender-body theory for linear chains of particles. The method can be used to determine static (i.e. configuration specific) and dynamic properties of suspended particles that interact through both hydrodynamic and non-hydrodynamic forces, where the latter may be any type of Brownian. colloidal, interparticle or external force. The method is also readily extended to dynamically simulate both unbounded and bounded suspensions
    corecore