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Synopsis 

This work reports an experimental and theoretical study on the normal force developed by suspensions of 

magnetic microparticles subjected to magnetic fields. Experimental values of the normal force were obtained 

using a rotational rheometer, for a broad range of particle concentration in the suspensions. Applied 

magnetic fields up to 343 kA/m were generated in the plate-plate measuring geometry. It was found that the 

normal force exhibited a high-value plateau at low shear, followed by a decrease as the suspensions started 

to flow and a final low-value plateau at high shear. These three regions in the normal force vs. shear rate 

curve were well correlated with the microscopic regimes in the suspensions: field-aligned structures filling 

the gap; inclined structures still filling the gap; and structures non-filling the gap. The theoretical model 

developed is based on the equilibrium between hydrodynamic and magnetostatic torques and forces in a 

field-induced aggregate of particles subjected to shear. The stress tensor was obtained and the normal force 

calculated as the integral of the stress over the total surface of the rotational plate. A good correspondence 

among theoretical and experimental values was obtained.  
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1. Introduction 

Magnetorheological (MR) fluids are suspensions of magnetizable microparticles in a liquid carrier. 

They present the remarkable property that their flow behavior can be reversibly tuned by adjusting the 

intensity of an applied magnetic field. This property is the base of many applications of MR fluids, 

particularly in damping systems. Detailed reviews on the preparation, characterization and applications of 

MR fluids are available [Ashour et al. (1996); Bossis et al. (2002); Ginder (1998); Larson (1999); Phulé 

(1998); Rankin et al. (1998)]. However, the behavior of the normal forces developed by MR fluids is a 

particular aspect that is not covered in the reviews. In fact, there are only a few works that report on this 

aspect. De Vicente et al. (2002) studied the normal force developed in highly-concentrated MR suspensions 

(solid concentration: 50 vol.%) during shear flow in a plate-plate rheometer. They found that for high 

enough values of the applied magnetic field their suspensions developed a positive normal force below the 

yield point. The normal force was negligible in the absence of deformation, but increased abruptly as the 

suspensions were strained, reaching a maximum at the onset of the flow. Above this point the normal force 

decreased very sharply, being negligible in the flow regime even for the highest magnetic field applied (29.7 

kA/m). From these facts, the appearance of normal force was related by the authors to the existence of gap-

spanning structures induced by the magnetic field applied, which when inclined by the shear will bring about 

a positive normal force as a consequence of the resulting magnetic torque. Later, See and Tanner (2003) also 

studied the normal force developed by MR suspensions subjected to magnetic field applied normally to the 

shear plane in a plate-plate rheometer. They found that, even in the absence of shear, their MR suspensions 

developed a non-negligible normal force. When the suspensions were sheared, the normal force decreases 

progressively as the shear rate was increased, but a non-negligible normal force was also measured even at 

the highest shear rate values. Similarly to de Vicente et al. (2002), these authors attributed the appearance of 

normal force to the formation of field-induced structures. Most recently, Laun et al. (2008) reported a study 

on the normal stress differences in MR fluids subjected to applied magnetic fields. The results of their study 

agree well with the work by See and Tanner (2003) and a similar explanation was given.  
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From the point of view of the theoretical modeling, few works have been reported that allow 

calculating the normal stresses in magnetic colloids. As an example, Zubarev and Iskakova (2000) 

developed a microstructural model for the calculation of the stress tensor of ferrofluids. In addition, Shkel 

and Klingenberg (1999) developed a macroscopic continuum model of electrorheological (ER) fluids and 

attributed the shear and normal stresses to the change in the free energy of the ER fluid upon strain 

application. However this model was restricted to the elastic deformation regime and small strains, and could 

not be adapted to MR fluids under flow (which is the most interesting case for industrial applications). 

The motivation for our work was to find the reasons for the disagreement between the work by de 

Vicente et al. (2002) and these by See and Tanner (2003) and Laun et al. (2008), and to perform a rigorous 

analysis on the causes that provoke the appearance of field-induced normal forces in MR suspensions. Two 

main differences are found in the experimental protocols of these previous works, namely: (i) the intensity of 

the applied magnetic field was much larger in the works by See and Tanner (2003) and Laun et al. (2008) 

than in the work by de Vicente et al. (2002); (ii) the applied field was homogeneous in the latter work, 

whereas it was not in the other two works. The differences in field intensity does not seem to be a reasonable 

cause for the above-mentioned discrepancies, since the high sensibility of the normal force sensor 222-1364 

Haake used by de Vicente et al. (2002), should have permitted measuring non-negligible values of the 

normal force in the absence of shear and in the flow regime, even for the low applied fields that they used. 

On the other hand, it seems reasonable to think that the lack of homogeneity of the applied field could cause 

the appearance of normal forces in magnetic liquids, and it is taken into account in the model developed in 

our present paper. As will be shown, our model covers the flow regime and takes into account the 

hydrodynamic stresses generated by particulate aggregates, as well as the magnetic stresses appearing both 

in quiescent and highly sheared states. 

 

2. Experimental 

Iron powder was supplied by BASF (Germany) and used without further treatment. The manufacturer 

indicates the following specifications: (i) chemical composition (wt%): minimum 97.5% Fe, 0.7–1.0% C; 
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0.7–1.0% N; 0.3–0.5% O; and (ii) density: minimum 7.5 g/cm
3
. Our scanning electron microscopy (SEM) 

pictures show that iron particles are spherical and polydisperse, with an average diameter 930 ± 330 nm. 

Magnetization measurements (not shown here for brevity), performed with a Squid Quantum Design MPMS 

XL magnetometer at 20 ºC, showed that iron powder behaves as a soft ferromagnetic material. From the 

magnetization curve, saturation magnetization of 1722 ± 1 kA/m and initial (at 4 kA/m) susceptibility of 32 

were obtained for the powder.  

MR suspensions were prepared by dispersing proper amounts of iron powders in kerosene (Sigma-

Aldrich; viscosity 2.1 mPa·s; density 0.79 g/cm
3
). Aluminum stearate [molecular formula: Al(C18H35O2)3; 

technical grade; Sigma-Aldrich] was used as surfactant to avoid particle irreversible aggregation. The 

suspensions were homogenized by sonication and mechanical mixing.   

A magnetorheometer (MCR 300 Physica-Anton Paar, Austria) was used for characterizing the MR 

properties of the suspensions at 25 °C. The measuring system geometry was a 20 mm diameter parallel-plate 

set for a gap width of 0.35 mm. The magnetorheometer MCR 300 was provided with an electromagnet that 

allows generating high magnetic fields in the measuring gap. We obtained the distribution of the magnetic 

field in the measuring gap for each given electric current in the coil by means of finite element method 

(FEM) simulations, performed using FEMM software package, version 4.2 [http://femm.foster-miller.net/]. 

As an example, Figure 1 shows results for the magnetic field strength without sample (Figure 1a) and for the 

normal component of the magnetic induction with sample (Figure 1b). As observed, the magnetic field 

generated by the magnetorheometer MCR 300 in the measuring gap is inhomogeneous, having a non 

negligible gradient along the radial coordinate. These results agree well with the measurements and 

simulations previously performed by Laun et al. (2008) for the similar Physica MCR501 rheometer. 
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Figure 1. Calculations by means of FEM simulation of: (a) radial distribution of the magnetic field strength in the measuring gap 

(without sample); (b) radial distribution of the normal component of the magnetic flux density taken at the interface between the 

MR fluid sample (iron volume fraction, Φ=30%) and the rheometer plate in the flow regime; the electromagnet electric current 

considered was 2 A in both cases. The radius of the upper plate (10 mm) is indicated with a dash vertical line. 

 

Rheological measurements were carried out as follows: (i) samples were placed between the parallel 

plates and initially presheared for 30 s at a large shear rate at zero magnetic field strength to ensure 

reproducible initial conditions; (ii) immediately afterwards, an external magnetic field (up to H0 = 343 

kAm
−1
) was applied during a 30 s waiting time with no rate applied; (iii) finally, the samples were subjected 

to a shear rate ramp in the presence of the same external magnetic field strength that was used during the 

waiting time, and the corresponding shear stress and normal force were measured.  

 

3. Results 

 We studied the response of MR suspensions containing different amounts of iron powders (between 

10 and 33 vol.%) as previously described. All suspensions developed a MR response upon application of 

magnetic fields. Concerning the normal force, we checked that in the absence of field, the suspensions did 

not develop any measurable normal force. On the other hand, upon magnetic field application, a non-

negligible normal force appeared in the direction of the applied field, even in the absence of shear. 

Obviously, in the absence of shear the existence of normal force cannot be explained in terms of the 

hydrodynamic stresses. Once the suspension was sheared, the normal force first diminished abruptly to a 

minimum as the shear rate was increased and then increased progressively to a plateau value. As an example, 
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the behavior for a suspension containing 10 vol.% of iron upon application of an average field of 343 kA/m 

is shown in Figure 2. By average field we refer here to the line integral of the field intensity along the radius 

of the upper plate, weighed by the radius length, obtained from curves like this shown in Figure 1a.  

 

 

Figure 2. (a) Shear stress and normal force plotted as a function of shear rate; (b) relation between the different regimes of normal 

force and the expected microscopic particle structures. The solid (iron) volume fraction of the suspension is Φ=10%, and the 

applied field H=343kA/m. 

 

As observed in Figure 2a, the minimum of normal force is approximately reached for a value of the 

shear corresponding to the start of the flow (i.e. to the yield stress). Then, the different regions of normal 

force could be related to the following microscopic particle structures (see Figure 2b). (i) Gap-spanning 

structures that are aligned in the field-direction (absence of shear or very low shear – < 0.1 s
-1
): in this region 

a normal force plateau is observed. (ii) Gap-spanning structures that are tilted by the effect of shear (below 

the yield stress): in this region the normal force diminishes as the particles structures are tilted. The 

maximum inclination of the particle structures before the onset of the flow could correspond to the minimum 

of the normal force. (iii) Non-gap-spanning structures that break by the effect of shear and rebuild by the 

effect of the applied field: in this region the normal force first increases with the shear and then it reaches a 

plateau value. These three different microscopic structures probably correspond to those identified by 

Claracq et al. (2004) in shear stress versus shear rate measurements of MR fluids. 
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Figure 3. Normal force developed by a suspension containing 10 vol.% of iron as a function of shear rate for the indicated 

values of the applied field strength. 

 

As mentioned above, we analyzed the effect of magnetic field strength on the normal force developed 

by the MR suspensions. As an example, in Figure 3 the values of normal force developed by a suspension 

containing 10 vol.% of iron, are plotted as a function of the shear rate for several values of the applied field 

strength. We see that the normal force in the absence of field is negligible. On the other hand, the application 

of a field implies the appearance of a non-negligible normal force. Concerning the effect of field strength, it 

is clear that the value of the normal force increases with it. However, in all cases, the curve of the normal 

force vs. the shear rate has a similar trend, characterized by the three different regions discussed above. 

Similar trends were obtained for suspensions with higher solid volume fractions, not shown here for brevity.  

In order to get a clear picture about the effect of both volume fraction of solids and magnetic field 

strength on the normal force, we averaged the values for the high-shear plateau (flow regime). The results 

are plotted as a function of iron volume fraction in Figure 4. The symbols represent the experimental data, 

whereas the continuous lines represent fits to a parabolic function. The fact that the concentration 

dependence is stronger than linear could be a manifestation of the existence of hydrodynamic interactions 

between aggregates. At this point, it is important to mention that a quadratic dependence of the normal stress 

differences of ferrofluids on their volume fraction, associated to the existence of interparticle interactions, 

was found by Ilg et al. (2005) by means of theoretical simulation. Concerning the dependence on the field 
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strength, it seems to be higher than linear at low field, but then it tends to saturation as the field approaches 

that required for magnetically saturate the iron particles.  

 

 

Figure 4. Normal force developed by suspensions of iron microparticles in the flow regime as a function of the iron 

volume fraction for the indicated values of the applied field strength. Symbols and continuous lines represent respectively the 

experimental data and parabolic fits. 

 

4. Discussion: viscoelastic versus Maxwell stresses 

We try in this section to develop a theoretical model that, taking into account the field 

inhomogeneity, allows us to explain the values of the normal force obtained in our experiments. 

 

 

Figure 5. Simple shear flow between two infinite planes. Problem geometry is shown in figure (a); a sketch of the forces 

transmitted from the aggregates to the planes is shown in figure (b). 
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4.1. Viscoelastic response in a shear flow 

Let us consider a shear flow between two parallel infinite plates induced by a motion of the upper 

plate while the lower one is fixed (Figure 5a). A linear velocity profile is therefore established in the 

reference plane x1-x2: 21 xv γ�= , with γ�  being the shear rate and x2 the coordinate along the axis 2. An 

external homogeneous magnetic field of intensity, H0, is applied perpendicular to the channel walls. 

To calculate the normal stresses developed in a MR suspension subjected to such flow, we shall adapt 

a micromechanical model previously developed [Gómez-Ramírez et al. (submitted)] for the shear stress in a 

simple shear flow. In the presence of the magnetic field, the magnetic particles of a MR suspension form 

elongated aggregates aligned with the field. In a shear flow these aggregates tend to align in the flow 

direction. If the magnetic field is high enough, the magnetic torque exerted to the aggregates protects them 

from flipping, so that the aggregates do not rotate, but simply perform a translational motion in the x1-x2 

coordinate plane with the velocity of the suspending liquid and at an angle, θ, with respect to the axis 2 

(Figure 5a). The aggregates are supposed to be long cylinders, their orientation angle θ is defined by the 

equilibrium between the magnetic and the hydrodynamic torques exerted on them, and their aspect ratio, l, is 

defined by the equilibrium of the tensile hydrodynamic forces and cohesive magnetic forces: 
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where Φ is the volume fraction of magnetic particles in the suspension, Φa≈0.64 is supposed to be the 

internal volume fraction of the aggregates (which are composed of densely packed spherical particles), MS is 

the saturation magnetization of the magnetic particles, H is magnetic field intensity inside the MR 

suspension, χa is the magnetic susceptibility of the aggregates, η is the viscosity of a suspending liquid 

(kerosene), 12 ≈≈⊥ II
ff  are numerical coefficients that are close to unity for high aspect ratio aggregates 
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and µ0 = 4π·10-7
 H/m is the magnetic permeability of vacuum. The magnetic susceptibility of aggregates is 

defined as )1/(3 ββχ aaa Φ−Φ= , with )2/()( fpfp µµµµβ +−= , µp and µf = 1 being the relative magnetic 

permeability of the particles and the suspending liquid (kerosene), respectively. In the considered range of 

magnetic fields H0 < 350 kA/m, the carbonyl iron particles have a relative magnetic permeability well above 

unity, so the factor β is close to unity and the susceptibility of aggregates is )1/(3 aaa Φ−Φ≈χ . The 

magnetic field H inside a MR suspension sandwiched between two planes is related to the external magnetic 

field H0 by: 220 / µHH = . Here θµθµµ 22

22 sincos ⊥+= II  is the 22-component of the magnetic 

permeability tensor of the MR suspension, aaII χµ )/(1 ΦΦ+=  and 

[ ] [ ])/1(2/)/1(2 aaaa ΦΦ−+ΦΦ++=⊥ χχµ  is the relative magnetic permeability of the MR suspension in 

the directions parallel and perpendicular to the aggregate axes, respectively. Knowing the aggregate’s 

orientation (eq. 1) and aspect ratio (eq. 2), we can calculate the viscoelastic stress tensor (without pressure 

term) developed in the MR suspension using the following expression [Pokrovskiy (1978)]: 
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Here, δik is Kronecker delta, 1/ 2( / / )ik i k k iv x v xγ = ∂ ∂ + ∂ ∂  is the rate-of-strain tensor, 11 ≈II
f  is a numerical 

coefficient, ei is the projection of the unit vector e onto the i
th
 axis. This vector is parallel to the longitudinal 

axis of the aggregates and, thus, their components are θsin1 =e , θcos2 =e  and 03 =e ; Va is the aggregate 

volume; liklik TT ε−=  is the tensor of the magnetic torque, Tl, applied to the aggregates, εikl is the Levi-Civita 

tensor. The magnetic torque acts in the coordinate plane 1-2 and, therefore, has the only non-zero component 

along the axis 3, which is defined by the following expression: 
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If we introduce eqs. 1, 2 and 4 in the stress tensor (eq. 3), and taking into account that the shear rate is 

21 / dxdv=γ� , we get the following expressions for the shear stress, σv
12, normal stresses, as well as for the 1

st
 

and the 2
nd
 normal stress differences, developed in the MR suspension under shear: 
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In these formulas, 

1/ 2
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parameters and the angle θ is given by eq.(1). Note that the normal stresses appear to be independent of the 

shear rate. This is simply because the stresses generated by the particles are roughly proportional to the shear 

rate times the square of the aggregate aspect ratio ( 2lγ� ), and the latter decreases with the shear rate as 

2 1l γ −∝ � . Let us remark at this point that the aggregates are destroyed by the effect of the hydrodynamic 

tensile force, which is proportional to the shear rate, while they are reconstructed by the effect of the 
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attractive dipolar force between particles. The aggregate length (or aspect ratio) is obtained by the balance of 

these two forces and, therefore, it appears to be inversely proportional to the root square of the shear rate, as 

seen in eq. 2. However, such behavior holds within certain ranges of shear stress and magnetic fields, 

wherein the aggregate aspect ratio is approximately larger than ten, when the slender body theory [Batchelor 

(1970)] used in our model could be applied safely. A suitable dimensionless parameter that could indicate 

the limits of our model is the ratio of hydrodynamic to magnetic forces that is defined as the Mason number. 

In this work we express it as 3/ 2 1/ 2

0/( )SMa H Mηγ µ= � , but note that different expressions for this number 

can be found [Klingenberg et al. (2007)].  Using eq. 2 with a value of ten for l, we obtain for our 

experimental conditions maximum values of Ma ranging between 0.17 and 0.16 for particle volume fractions 

0.1<Φ<0.3. Thus, in our experiments, this parameter remains well below 1 and our theory could be applied. 

Otherwise, if the shear rates attain extremely high values, corresponding to Ma >> 1, the aggregates would 

be totally destroyed by the shear flow, and the MR fluid would behave as a conventional suspension of 

isolated particles without any noticeable normal stress in this range of volume fraction. Thus, we expect that 

at Ma > 0.17 the normal force decreases monotonically with the shear rate up to zero at infinite shear rate. 

Note further that the sum of the three viscoelastic normal stresses is zero: 0=ii
vσ , meaning that the 

viscoelastic stress tensor is traceless. Concerning the shear stress, it appears to follow a Bingham rheological 

law, ( )aY

v ΦΦ++= /2112 γησσ � , with the yield stress defined by the second term of equation (5): 
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This is the dynamic yield stress, defined by extrapolation of the flow curve to zero shear rate. Notice that the 

viscoelastic stress tensor is not symmetric, which is the case for the fluids with applied external torques. The 

asymmetric part of the stress tensor is proportional to the torque tensor Tik, so in our case it is equal to 

θθµλσσ cossin)/(/ 2

032112 HVT aaa

vv ⋅ΦΦ=ΦΦ=− . 
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In order to get a first analysis of our theory, we show in Figure 6 the yield stress and the normal 

stress differences N1 and N2 versus the magnetic field intensity H0, for the particle volume fraction, Φ = 0.1. 

All the three stresses are growing functions of the magnetic field intensity indicating that higher magnetic 

fields induce longer aggregates, which dissipate more energy. From the microscopic point of view, a 

restoring magnetic torque acts on the aggregates of the MR fluid and tends to align them with the magnetic 

field. Being tilted by the shear flow, the aggregates tend to turn in the counterclockwise direction and, 

therefore, exert forces to the surrounding liquid (Figure 5b) and the latter transmits them to the upper plane 

of the shear flow cell. Thus, the resulting restoring force exerted to the upper plane comes from the forces 

generated by each aggregate. The tangential component of this force is oriented in a direction opposite to the 

flow and is, therefore, responsible for the shear stress enhancement in the presence of a magnetic field (i.e. 

appearance of yield stress). The normal component of the resulting force pushes the upper plane upwards, 

which explains the origin of the viscoelastic normal stresses found in our theory. In more details, the 1
st
 

normal stress difference, N1, is positive and appears to be approximately two times larger than the yield 

stress, σY. The 2
nd
 normal stress difference, N2, is negative and its absolute value appears to be about six 

times lower than N1 and about two times lower than σY.  

 

 

Figure 6. Theoretical dependences of the yield and normal stresses versus the intensity of the external homogeneous magnetic 

field, for a MR suspension containing 10 vol.% solid fraction.  
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At this point it is important to remark that our theory does not take into account the hydrodynamic 

interactions between aggregates, which, in a concentrated regime, would enhance considerably the stress and 

would induce Φ2
 and higher order terms in the stress tensor. 

 

4.2. Analysis of the forces in plate-plate geometry  

Now, having expressions for each component of the viscoelastic stress tensor, it is possible to 

calculate the normal force and the torque exerted by the MR fluid on the rotating plate of the rheometer 

(Figure 7). 

 

Figure 7. Sketch of the plate-plate geometry of the rheometer.  

 

First we should determine the total stress developed in the MR fluid, which contains an isotropic pressure 

term, the viscoelastic term, σv
ik, and the Maxwell stress, σM

ik, which appears in any matter subject to a 

magnetic field: 

 

    ik
M

ik
v

ikp σσδσ ++−=     (11) 

We consider here that from the point of view of the experimental geometry, the permeability of the MR fluid 

varies from point to point in a continuous way and, therefore, it can be calculated by using Maxwell-Garnett 

theory [Garnett (1904)]. Rigorously, this would impose a restriction to the aggregate size, which should be 

well below the rheometer gap. However, Maxwell-Garnett theory can still be used to obtain a semi-

quantitative estimation of the suspension permeability for non-homogeneous suspensions, such as 
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suspensions of gap-spanning aggregates. Then, the Maxwell stress inside the MR fluid is defined by the 

same formula as for a ferrofluid [Bashtovoi et al. (1988); Ilg and Odenbach (2009)]:  

 

kiikik
M BHH +−= δµσ 2

0
2

1
,    (12) 

 

where B is the magnetic flux density in the MR fluid, which is related to the magnetic field intensity H and 

the MR fluid magnetization M through the relation B = µ0(H+M). The MR fluid magnetization is related to 

the magnetization of each aggregate, Ma, through the expression M = ΦMa/Φa. Using this formula, it is easy 

to show that the antisymmetric part of the Maxwell stress tensor is exactly opposite to the antisymmetric part 

of the viscoelastic tensor: 
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Thus, the total stress (11) is symmetric, which is consistent with the conservation of the total angular 

momentum in the suspension. In order to calculate the force and the torque exerted by the MR fluid on the 

rheometer plate, we must know the pressure distribution on the plate surface. The pressure is found from the 

equation of motion of the MR fluid, which is simply 0=⋅∇ σ , when fluid inertia and gravity forces are 

neglected. Taking into account (11) and (12), this equation reads: 

 

   0HM =∇⋅+⋅∇+∇− 0µσ vp        (14) 

 

The last term is the volume density of the magnetic force in the MR fluid in inhomogeneous magnetic fields. 

The sum of the pressure gradient and magnetic force terms (the 1
st
 and the 3

rd
 terms) can be rearranged as 

( )∫ ⋅−−∇=∇⋅+∇− HMHM dpp 00 µµ . And, introducing the equivalent pressure, ∫ ⋅−= HM dpp 0* µ , the 

equation (13) takes the following form: 
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    0=⋅+∇∇− vp σ*      (15) 

 

The upper rotating plate drags the MR fluid, such that its velocity has only polar component v1 = f(x2,x3). 

Due to the axial symmetry of the problem, the magnetic field H has a zero polar component, H1 = 0, and the 

pressure p is supposed to be independent of the polar coordinate x1. The aggregates are supposed to be in the 

1-2-coordinate plane, so that they will not give any contribution to the shear components σv
13, σv

31, σv
23, 

σv
32, and, thus, these will be defined only by the solvent stress. Thus, taking into account the velocity profile, 

v1 = f(x2,x3), 03223 == vv σσ  and 313113 / xvvv ∂∂== ησσ . In addition, the later stress is negligible as compared 

to the 12-component of the solvent stress 2112 / xvsolvent ∂∂=ησ  and is neglected in the rheometry theory 

[Macosko (1994)]. The remaining components of the viscoelastic stress tensor are defined by eqs. (5)-(8). 

Finally, the three components of the equation of motion along the coordinate axes 1, 2 and 3 (Figure 7) will 

take the following form: 

 

 0
2

12 =
∂

∂
x

vσ
,  

2

22

2

*

xx

p v

∂
∂=

∂
∂ σ

,  
3

1133

3

33

3

*

xxx

p vvv σσσ −−
∂

∂=
∂
∂

  (16) 

 

The normal force acting on the rheometer plate is the integral of the stress over the total surface Σ of the 

plate: 

 

  ∫∫∫∫
ΣΣ

++−== dSnpdSnF kk
M

k
v

kkk )( 22222 σσδσ ,   (17) 

 

where n is the unit outward vector normal to the surface. The pressure and the viscoelastic terms are zero 

outside of the MR fluid, so, they are integrated only over the surface of the rheometer plate wetted by the 

MR fluid, ΣW. The integral of the Maxwell stress exerted on a non-magnetic rheometer plate can be 

presented as [Rosensweig, 1985]: 2

M

k kn dSσ
Σ

  ∫∫� , where [ ]ik
Mσ  denotes the jump of the Maxwell stress on 
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the surface of the plate. The latter is non-zero only along the MR fluid/plate interface, so the Maxwell stress 

is also integrated over the wetted surface ΣW.  The equation (17) reads now: 

    [ ]( )∫∫
Σ

++−−=
W

dSpF Mv
22222 σσ    (18) 

According to [Bashtovoi et al. (1988)], the jump of the normal component of the Maxwell stress is equal to 

[ ] 2

022 )2/1( n

M Mµσ −= , where nM  is the component of the MR fluid magnetization normal to the 

rheometer plate.  

Introducing the equivalent pressure p*, and passing to the polar coordinate system (r,φ), equation (18) 

becomes: 

2

2 0 22 0

0

1
2 *

2

R

v

nF r p d M drπ µ σ µ = + ⋅ − + 
 

∫ ∫M H     (19) 

Replacing ∫ drrp*  by ∫∫ ∂∂− drrprprd )/*()2/1(*)()2/1( 22 , performing integration by parts and using the 

third equation of (16), we obtain  

2 2

2 33 0 0 1 2

0 0

1
*( ) ( ) 2 ( )

2

R R

v

nF R p R R r d M dr r N N drπ σ π µ µ π  = − + ⋅ + + −    
∫ ∫ ∫M H   (20) 

In order to find the first term in the right-hand side of (20), we apply a boundary condition at the edge of the 

MR fluid sample (r = R), which postulates a discontinuity of the total stress. So, neglecting capillary effects, 

we have: [ ] 0)()( 3333 =++− Mv RRp σσ , where [ ]33
Mσ  denotes the jump of the Maxwell stress on the MR 

fluid meniscus and is equal to mnM )()2/1(
2

0µ− , where mnM )(  is the component of the MR fluid 

magnetization normal to the surface of the MR fluid meniscus. The magnitude mnM )(  must not be 

confounded with Mn –normal component of the magnetization at the surface of the upper plate of the 

rheometer. Using the equivalent pressure, the boundary condition takes its final form: 

( ) ( )2

0 33 0*( ) ( ) (1/ 2) 0v

n
mr R

p R d R Mµ σ µ
=

− + ⋅ + − =∫M H ,  (21) 

where the subscript “r = R” denotes that the primitive ∫ ⋅ HM d  is calculated at r = R.  

Thus, substituting (21) into (20), we get the final result for the normal magnetic force: 
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( )2 2

2 0 0 0 1 2

0 0

1 1
2 ( )

2 2

R r R

n n
m

R

F r d M M dr r N N drπ µ µ µ π
 

= ⋅ + − + − 
 

∫ ∫ ∫M H   (22) 

The first integral of this equation represents the magnetic force and exists even at rest, when the 

suspension is not strained. The second integral stands for the pure viscoelastic response of the MR 

suspension under flow and has the same form as for conventional viscoelastic fluids [Macosko (1994)]. The 

magnetic force (first integral of eq. 22) contains three terms. The first one appears only when the magnetic 

field is inhomogeneous and represents the force pushing the MR fluid in the direction of the field gradient. 

In our experimental geometry, the magnetic field is inhomogeneous, so this term must be taken into account. 

The second term comes from the Maxwell stress and represents the magnetic pressure jump 

2

22 0(1/ 2)M

nMσ µ  =   integrated over the wetted surface. This term appears due to the fact that the MR fluid 

sample tends to be stretched along the magnetic field lines, in order to decrease its magnetic energy. As a 

consequence of this term, even at rest, in a perfectly homogeneous magnetic field, we will always have a 

positive normal magnetic force equal to 22

0)2/1( RM n πµ . The third term corresponds to the jump [ ]33
Mσ  of 

the Maxwell stress on the meniscus surface, which is called magnetic pressure jump. In fact, due to the edge 

effects, the magnetic field becomes quite inhomogeneous in the vicinity of the MR fluid meniscus and, 

therefore, the magnetic field intensity and the magnetization could have a radial component.  

In order to calculate both the magnetic and the viscoelastic components of the normal force, we need 

the magnetic field distribution inside the MR fluid sample. We obtained this distribution by FEM 

simulations of the Maxwell magnetostatic equations. A typical distribution of the normal component of the 

magnetic flux density along the wetted surface of the rheometer plate is shown in Figure 1b. With this aim, 

the MR fluid was considered as an anisotropic medium, with magnetic permeability components: 22 IIµ µ=  

and 33µ µ⊥=  at rest; and θµθµµ 22

22 sincos ⊥+= II  and 33µ µ⊥=  in the flow regime. Note that both ⊥µ  and 

µ// were defined above (cf. paragraph after eq. 2). At this point, it is important to remark that we will not 

calculate here the values corresponding to the pre-yield regime, which will remain as an open question. 

Nevertheless, the conclusions obtained will be general, since in our model, only the expressions of the 
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magnetic permeability depend on the regime considered. Appropriate expressions for the magnetic 

permeability of a MR suspension in the static and pre-yield regimes could be found in Volkova (1998).  

Once the magnetic field distribution is known, the normal force can be calculated using eq. (22). Let 

us first analyze the importance the magnetic normal force (first integral of eq. 22) in the case of a MR 

suspension at rest, when the shear strain and shear rate are both zero. The theoretical and experimental 

dependencies of the magnetic normal force on the applied magnetic field strength are shown in Figure 8, for 

a suspension with 10% volume fraction of iron particles. As observed, there is a satisfactory correspondence 

between theoretical and experimental results, which confirms the importance of the Maxwell stresses in MR 

suspensions. Concerning the relative importance of the three terms of the magnetic force, the second term 

(which is due to the magnetic pressure jump on the rheometer plate –see eq. 22) is proved to be the major 

contribution to the total normal force. The contributions of the other two terms (which are due to the field 

gradient and to the magnetic pressure on the meniscus) are negative and their absolute values are, 

respectively, about 11% and 4 % of the total force. The negative sign of the term due to the magnetic field 

gradient can be explained as follows. The magnetic field intensity is lower in the central region of the MR 

fluid (r<4mm) than in the periphery (see Figure 1b). Therefore, being a growing function of the magnetic 

field, the pressure in the central region will be lower than that on the meniscus, i.e. lower than atmospheric 

pressure. Such depression sucks the rheometer plate downwards and creates a negative normal force.  

 

Figure 8. Normal magnetic force developed by a MR fluid (concentration 10 vol.%) at rest, plotted as a function of the 

applied magnetic field strength. Symbols and continuous lines represent respectively the experimental and theoretical data. Curve 

1 stands for the total magnetic force. Curves 2 and 3 stand for the absolute values of the magnetic force due respectively to the 

field gradient and to the magnetic pressure on the meniscus. 
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Let us now analyze the theoretical predictions for the total normal force calculated by eq. (22). Its 

value is plotted in Figure 9 as a function of the magnetic field intensity -experimental results are also 

included for comparison. As can be seen, our theory describes semi-quantitatively the experimental results, 

but it underestimates the change of normal force with the volume fraction. In particular at a volume fraction 

31.6%, our theory predicts a normal force rather close to the one at 20.8% whereas we observe 

experimentally a quite large increase. This is probably due to the fact that our theory does not take into 

account the hydrodynamic interactions and collisions between aggregates, which, in a concentrated regime, 

would enhance considerably the stress and would induce Φ2
 and higher order terms in the stress tensor. At a 

volume fraction 10% our model overestimates the normal force probably because the magnetic interactions 

between particles inside aggregates are also overestimated, and thus the aggregate length, which will give 

higher values of the viscoelastic stresses. Note that the viscoelastic component of the normal force, 

calculated by eq. (22), is about 2.7 times higher than the magnetic component for a volume fraction of 

particles 10%. This shows that the magnetic force is non negligible and should be taken into account, 

something, that to the best of our knowledge, has never been done before in a magnetorheological study.  

 

 

Figure 9. Normal force developed by MR suspensions in the flow regime as a function of the applied magnetic field strength. 

Lines and symbols represent respectively the theoretical and experimental values. Iron concentration in the MR suspensions: 10 

vol.% (full squares and lower line); 20.8 vol.% (open circles and middle line); 31.6 vol.% (full triangles and upper line).  

 



 21 

Let us now calculate the restoring torque exerted by the MR fluid onto the rheometer plate. Using the 

same consideration as for the normal force, the torque is given by the following relation: 

[ ]( ) [ ]( )[ ]∫∫∫∫
ΣΣ

+−+−=−=Γ=Γ
W

dSxxdSxnxn MvMv

kkkk 13232312121331132 )( σσσσσσ  (23) 

As mentioned above, the 32-component of the viscoelastic stress is zero: σv
32 = 0. Both jumps of the 

Maxwell stress are also zero, [ ] [ ] 02112 == BHMσ  and [ ] [ ] 02332 == BHMσ , because the polar component of 

the magnetic field intensity H1 is zero and the jump of the radial component H3 (tangential to the rheometer 

plate) is zero according to the boundary conditions for the field. Thus, eq. (23) reduces to the classical 

formula used in rheometry for conventional fluids [Macosko (1994)]:  

∫−=Γ
R

v drr
0

12
2

2 2 σπ       (24) 

The minus sign in this formula indicates that the restoring viscous torque is opposite to the direction of plate 

rotation. We see that, contrarily to the case of the normal force, the Maxwell stress does not intervene into 

the tangential stresses developed in a MR fluid, and only a shear viscous stress is important. In our case, we 

have a Bingham MR fluid with a rheological equation, γησσ �+= Y

v
12 , where the yield stress, σY, is given by 

eq. (10), and, thus, it is a function of the magnetic field intensity H0(r). Therefore, it depends on the radial 

coordinate r, and the viscosity ( )aΦΦ+= /210ηη  is constant throughout the sample. Thus, the expression 

for the torque reads: 

 333

0

2

2
23

2

2
2 RRRdrr RYR

R

Y γηπσπγηπσπ �� −−=−−=Γ ∫ ,    (25) 

where Rγ�  is the shear rate at the border of the plate (r = R) and ∫≡
R

YY drr
R

0

2

3

3 σσ  is the mean value of the 

yield stress. Let us introduce the apparent shear stress –the shear stress at the border of the plate that would 

appear if the considered fluid were Newtonian: 
3

2

R

a

π
σ Γ= . This is the shear stress measured by the 

rheometer. Therefore, if in experiments we observe a Bingham behavior of the MR fluid, we measure an 

apparent yield stress a

Yσ , which is related to the real yield stress through a simple relation, Y

a

Y σσ )3/4(= , 
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which can be easily deduced from eq. (25). The apparent yield stress calculated using eq. (10) is compared to 

the experimental one in Figure 10 for a suspension containing a volume fraction of particles 10%. We 

observe a semi-quantitatively agreement between the theoretical and the experimental results. However, as 

mentioned above, our theory does not take into account the hydrodynamic interactions between aggregates, 

which, in a concentrated regime, would enhance considerably the stress and, therefore, we cannot apply it 

safely for more concentrated suspensions.  

 

Figure 10. Apparent yield stress versus the intensity of the applied magnetic field for a suspension containing a volume fraction of 

particles Φ = 0.1. Line and points represent theoretical and experimental values, respectively. 

Note finally that, to our knowledge, among the existing theories predicting rheological behavior of 

MR fluids from the hydrodynamic point of view [Martin and Anderson (1996); Martin (2000); Volkova 

(1998); Shulman et al. (1986)], our theory is the first one giving a good order of magnitude for both the 

shear stress and the normal stress developed by a MR fluid.  

 

5. Conclusions 

We have presented in this work both an experimental and a theoretical study of the normal force 

developed by suspensions of magnetic microparticles (MR suspensions) in the presence of inhomogeneous 

magnetic fields. It has been shown that these MR suspensions develop a non-negligible normal force both in 

the absence and presence of shear. We can distinguish three regions in the normal force vs. shear rate curve: 

(i) an initial, high-value plateau that is associated to the state where the field-induced structures are not 
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deformed by the shear; (ii) a zone where the normal force decreases rapidly with the shear rate, which 

approximately coincides with the pre-yield regime, where the field-induced structures are appreciably tilted 

by the field, but still gap-spanning; (iii) at high shear, where structures are continuously broken by the effect 

of the hydrodynamic forces, a low-value plateau of the normal force is obtained. We have also analyzed the 

effect on normal forces of the magnetic field strength and concentration of magnetic particles in the MR 

suspension. We have found that the normal force increases faster than linearly both with the volume fraction 

and with the magnetic field in the range experimentally investigated. 

In order to better explain the origin of the normal force, we have developed a theoretical model that 

predicts semi-quantitatively the values of this force. This model includes both the viscoelastic response of 

the MR fluid under an applied magnetic field and the effect of the magnetic Maxwell stress, which tends to 

stretch the MR fluid sample along the field lines and, thus, pushes apart the rheometer plates. In the regime 

of the high shear rate plateau, viscoelastic stresses and Maxwell stresses are found to give comparable 

contributions to the normal force. Our theory also includes the contribution to the normal stress of the radial 

inhomogeneity of the magnetic field, which is inherent to the kind of magnetorheometer used in this work. 

The results obtained indicate that for a field gradient like that shown in Figure 1 the contribution of the field 

inhomogeneity to the normal force is around 10 % of the total value. Nevertheless, we have ignored the 

possibility of particle migration due to this inhomogeneity, which would substantially change the radial 

distribution of the viscoelastic and magnetic normal stresses. Such migration is expected to be a long-time 

process, hindered by the shear flow, and therefore it should only be relevant when low viscosity carriers are 

used. 
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