J. Fluid Mech. (1987), vol. 180, pp. 21—49 21
Printed in Great Britain

Dynamic simulation of hydrodynamically
interacting particles

By L. DURLOFSKY, J. F. BRADY
Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA

AND G. BOSSIS

Laboratorie de Physique de la Matieére Condensée, Université de Nice, Parc Valrose,
06034 Nice Cedex, France

(Received 18 June 1986)

A general method for computing the hydrodynamic interactions among N suspended
particles, under the condition of vanishingly small particle Reynolds number, is
presented. The method accounts for both near-field lubrication effects and the
dominant many-body interactions. The many-body hydrodynamic interactions
reproduce the screening characteristic of porous media and the ‘effective viscosity’
of free suspensions. The method is accurate and computationally efficient, permitting
the dynamic simulation of arbitrarily configured many-particle systems. The hydro-
dynamic interactions calculated are shown to agree well with available exact
calculations for small numbers of particles and to reproduce slender-body theory
for linear chains of particles. The method can be used to determine static (i.e.
configuration specific) and dynamic properties of suspended particles that interact
through both hydrodynamic and non-hydrodynamic forces, where the latter may be
any type of Brownian, colloidal, interparticle or external force. The method is also
readily extended to dynamically simulate both unbounded and bounded suspensions.

1. Introduction

The behaviour of a finite number of small, hydrodynamically interacting particles,
subject to externally imposed forces, torques or a linear shear flow, is fundamental
to low-Reynolds-number hydrodynamics and finds application in a wide variety of
systems such as suspensions, colloids and polymers, to name but a few. An adequate
understanding of problems of this nature, however, has yet to be attained. In fact,
the only exact, general solutions known to date are for two-body systems, particularly
two rigid spheres. The many-body interaction problem, in this as in other branches
of physics, poses an obstacle to further progress. Any theory that attempts to describe
the dynamics of a system of particles suspended or dispersed in a fluid medium must
address the issue of the hydrodynamic interactions among particles. For dilute
systems, two-body interactions may suffice, but at even relatively low volume
fractions of solids, many-body hydrodynamic interactions become important,
affecting both quantitative and qualitative behaviour.

The purpose of this paper is to present a general simulation method capable of
computing both static and dynamic properties of a finite, but arbitrarily large, system
of hydrodynamically interacting particles, subject to prescribed forces, torques or an
imposed linear shear flow, under conditions of vanishing particle Reynolds number.
The method accounts for both near-field lubrication effects and the dominant
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many-body interactions. The method is fast, accurate and allows dynamic simulation
of arbitrarily configured many-particle systems.

In the past, several methods concerned with hydrodynamically interacting,
many-body systems have been developed. Kynch (1959) extended the method of
reflections to account for effects from third and fourth bodies, showing that when
relating the velocity disturbance of one sphere to the external force applied to another
(i.e. the mobility interaction), third-body effects do not appear until O(1/r*), where
r is a characteristic particle spacing, and fourth-body effects until O(1/r7?). Mazur &
Saarloos (1982) developed a Fourier-space multipole expansion method, which
allowed them to calculate the sphere mobility functions for a finite system of spheres
as a power series in inverse particle spacing. They showed that the dominant n-body
mobility interaction appears at O(r~3%*+5), in agreement with the findings of Kynch.
Mazur & Saarloos calculated the sphere mobility functions up to O(1/77?), including
three- and four-body interactions. Though complex, their analysis is quite general
and could, in theory, be extended to include higher-order many-body contributions.
(Beenakker & Mazur 1983 have included higher-order terms in the context of a
suspension problem where they formally sum certain many-body interaction series.)
8. Kim (1985, unpublished work), using a real-space multipole expansion method,
solved the problem of three identical spheres located at the corners of an equilateral
triangle sedimenting perpendicular to the plane of the triangle. He was able to obtain
results for sphere centre-to-centre spacings of 2.5 radii or greater. He was, however,
forced to extrapolate to obtain results at nearer spacings owing to the slow
convergence of the series.

In addition to the analytical work discussed above, there have been several
numerical studies of hydrodynamically interacting, many-body systems. Most not-
able is the work of Ganatos, Pfeffer & Weinbaum (1978) in which they developed a
collocation technique — expanding the solution to Stokes equations in the appropriate
eigenfunctions and satisfying the boundary conditions at collocation points— to
calculate particle velocities and drag coefficients for systems of identical spheres.
Their method has only been applied to problems of high symmetry in order to reduce
the number of unknowns, and under optimal conditions their method requires four
boundary points per sphere; each boundary point has associated with it three
unknowns. The location of the boundary points on the sphere surface is not, however,
completely unambiguous. Ganatos et al. considered several static problems (i.e.
instantaneous configurations) and some limited dynamics. The static problems
involved calculation of the instantaneous velocities of spheres located in a straight
chain, with the chain oriented either parallel or perpendicular to the direction of the
imposed force. The number of spheres in a chain, as well as the spacing between
spheres, was varied. They also computed the dynamic trajectories of several
three-sphere sedimenting systems, following the sphere motions for hundreds of radii.

Other numerical methods could conceivably be applied to the many-sphere
problem. Solution of the integral equation for Stokes flow, along the lines developed
by Youngren & Acrivos (1975), could be accomplished for many-body systems. This
method has the advantage of being able to treat general particle shapes more easily
than most other methods and is relatively simple to implement. In discretizing the
particle surface, however, the number of unknowns per particle can become quite
large, prohibiting its use for dynamic simulation. Finite-difference or finite-element
schemes might also be applicable to systems of particles confined within boundaries,
but they are not generally applicable to unconfined systems because the velocity
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disturbances caused by the particles decay so slowly that an extremely large
computational domain would be required.

Though quite useful for some problems, all of the methods discussed above
encounter serious difficulties when two or more particles come near contact. At close
spacings, lubrication forces come into play, making actual physical contact of
particles subjected to finite forces impossible. The force required to push two particles
together diverges as the inverse of the spacing between the particle surfaces. These
lubrication forces are not, however, included directly in any of the methods discussed
above. In all of the analytic approaches, the lubrication forces must be built up by
including many terms in the expansion in inverse particle spacing. This is a slowly
convergent process; an infinite number of reflections is required to recover the
lubrication forces between arbitrarily close particles.

The numerical method of Ganatos et al. experiences similar difficulties when spheres
come near contact. For such configurations a greater number of boundary points, and
thus more unknowns, is needed to satisfy the no-slip boundary conditions on the
sphere surfaces. At a sphere centre-to-centre spacing of 2.005 radii, Ganatos et al. were
forced to use 12 boundary points on each sphere, resulting in 36 unknowns per sphere.
At closer spacings, which are likely to occur in a sufficiently complex system, even
more boundary points would be required, resulting in prohibitive computer times and
eliminating the possibility of computing dynamics. Direct solution of the integral
equation encounters the same difficulty, with an increasing number of surface
elements being required to resolve the lubrication-force densities. (It is possible,
however, to devise a method that analytically takes lubrication explicitly into
account in the integral formulation, thus keeping the number of unknowns per
particle manageable (cf. the discussion in §2).)

Bossis & Brady (1984) developed a general molecular-dynamics-like method for
simulating the dynamics of suspensions of hydrodynamically interacting particles.
Though their work dealt with infinite systems, it is relevant to this discussion,
particularly because Bossis & Brady addressed the problem of directly including
lubrication forces in the sphere—sphere interactions. In their simulation of a sus-
pension of neutrally buoyant particles subjected to a linear shear flow Bossis & Brady
considered two different procedures for calculating particle interactions: pairwise
additivity of velocities (mobilities) and pairwise additivity of forces (resistances),
neither of which explicitly included many-body interactions. Using pairwise addi-
tivity of velocities, the mobility matrix (which relates sphere velocities to forces and
torques) is formed directly ; using pairwise additivity of forces, the resistance matrix
(which relates forces and torques to velocities) is formed (cf. §2). If forces and torques
are prescribed, as they are in most problems, the former method is more convenient,
because all that is required to determine the sphere velocities is a matrix multipli-
cation. The latter method, by contrast, requires the solution of a system of equations.
Bossis & Brady found that lubrication forces, which kept particles from touching,
were only preserved through pairwise addition of forces. In simulations that
employed pairwise addition of velocities, particles freely touched and overlapped,
unless strong, repulsive interparticle forces were introduced. Only by forming the
resistance matrix, and then solving a system of equations to determine sphere
velocities, were the spheres kept from touching.

As mentioned above, third-body effects do not appear in the mobility matrix until
O(1/7%). In the resistance matrix, by contrast, they appear at O(1/r2). Thus, third-
and higher-body effects may be important to include when forming the resistance
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matrix directly. Bossis & Brady neglected third- and higher-body interactions in their
resistance formulation, with the physical assumption that, in the highly concentrated
systems they studied, lubrication forces dominate and third-body interactions should
be of much less importance.

From the above discussion it is clear that lubrication forces are preserved via
pairwise additivity of forces (i.e. through directly forming the resistance matrix), but
that three- and higher-body effects are more important to include in the resistance
matrix than in the mobility matrix. Thus, using only pairwise additivity, it seems
that the mobility formulation is more accurate for systems with widely spaced
particles, but the resistance formulation is more accurate for closely spaced particles.
In a general system of interacting particles, however, there are regions both of high
concentration, where particles are near contact, and low concentration, where
particles are widely spaced. A general technique must be able to describe the motion
of the particles in such a system for any possible configuration.

The method that we shall present accounts for both the many-body interactions
and the lubrication forces in a consistent, unambiguous way. It is fast, efficient,
accurate, and can handle any configuration of a finite system of N particles. The
method is also readily extended to treat infinite suspensions. For simplicity, it is
assumed that the particles are identical spheres, though the method could easily be
adapted to include spheres of unequal sizes, and with a bit more difficulty it could
be extended to particles of arbitrary size and shape. We shall develop two different
versions of our method, each representing a different level of approximation. Each
is therefore best suited to a particular class of problems. The first is most applicable
to problems in which forces and torques are prescribed, but there is no linear shear
flow. The second, more accurate, version is applicable to all problems, including those
in which a linear shear flow is imposed; it does, however, require more computation
time.

In brief overview, in our general method we first form the N-sphere mobility
matrix, up to a particular order in inverse particle spacing depending on the version.
This is accomplished by expanding the integral formulation for Stokes flow for the
N-sphere system, in conjunction with Faxén laws for the particle velocities, in
the moments of the force distribution on the surface of each particle. The first
version, called the F-T version, includes only two-body force/torque — translational
velocity /angular velocity interactions. The second version, denoted F-T—S, includes
two-body force/torque/stresslet — translational velocity/angular velocity/rate of
strain interactions. Because it includes only two-body interactions, the F-T mobility
matrix only includes terms up to and including O(r®). In the F-T-S version, the
stresslet interactions incorporate all terms of O(r~®). In both versions, however, the
N-sphere mobility matrix is a far-field approximation; no lubrication behaviour is
included.

Once the N-sphere mobility matrix is formed, it is inverted, yielding a far-field
approximation to the resistance matrix. Even though the mobility matrix only
includes two-body mobility interactions, its invert includes many-body resistance
interactions. Upon inversion, all many-body reflections of the mobility elements are
performed, resulting in a resistance matrix that is a true many-body function; it is
by no means a pairwise additivity of interactions. We shall show explicitly in the next
section precisely which many-body reflections are included in each method. This
resistance matrix, however, still lacks lubrication interactions. Lubrication is intro-
duced in a pairwise additive manner, using the exact two-body resistance functions
calculated by Arp & Mason (1977), Jeffrey & Onishi (1984) and Kim & Mifflin (1985).
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In adding the resistance functions, care is taken to ensure that two-body interactions
are not counted twice. The resistance matrix now includes near-field lubrication
forces as well as far-field many-body interactions. Particle velocities can then be
determined by solving a matrix equation.

In §2 we formulate our simulation method for a finite system of N spheres. Starting
from the integral formulation for Stokes flow, we form the N-sphere mobility matrix
as a moments expansion, and describe how to adjust its invert for lubrication. We
also discuss in detail the precise nature of the many-body interactions that are
included in the mobility invert, showing that both the screening characteristic of a
porous medium and the effective viscosity of a viscous suspension are reproduced.
In §3 we compare some of our sedimentation results with those of Ganatos et al. and
Kim. In all cases, agreement is excellent — typically three-significant-figure accuracy.
It is also shown that our results for long chains of spheres, both sedimenting and
immersed in a linear shear flow, are in accord with slender-body theory (Batchelor
1970b; Chwang & Wu 1975). We shall also show some specific examples in which a
simple pairwise additivity of mobility interactions leads to completely incorrect
physics. Next, we present sedimentation and shear-flow results for problems not
previously studied. Among these are dynamic trajectories that display interesting
periodic behaviour; for example, it is shown that spheres initially oriented at the
corners of a cube, with a prescribed foree in a direction perpendicular to one of the
cube faces, will continually invert themselves, reforming their initial configurations
at later times. Finally, in §4 we indicate the wide variety of finite particle systems
that may now be studied rigorously, e.g. colloidal or cellular aggregates, micro-
mechanical models of polymers, mobility of bioproteins, etc. We also discuss how the
method we have developed may be generalized to non-spherical particles, to include
particle interactions with solid boundaries and to dynamically simulate unbounded
suspensions.

2. Method

We consider a finite system of rigid particles, small enough such that the particle
Reynolds number, Ua/v, where U is a characteristic velocity, @ a characteristic size
of the particles and v the kinematic viscosity of the fluid, is much less than unity.
The particles are suspended in an unbounded Newtonian fluid, which may be
undergoing an imposed linear shear flow. Our intent is to develop a method that will
allow us to calculate the translational and angular velocities of all the particles given
the force and torque acting on each one.

In the absence of a shear flow, the basic problem is to generate an N-particle
mobility matrix M that relates particle velocities to forces and torques:

U=M-'F, @.1)

where U is the translational-angular velocity vector, F is the force—torque vector,
both of dimension 6N, and the 6N x 6N square matrix M is called the mobility
matrix. The inverse problem is to calculate the forces and torques given the particle
velocities:

F=R-U, (2.2)
where R is the resistance matrix and is the inverse of M:

R=M" 2.3)
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(As shown below, (2.1) and (2.2) require modification when a linear shear flow is
imposed.) In Stokes-flow problems, M and R possess many important properties;
most fundamentally, M and R depend only on the instantaneous configuration of
the particles, not on the particle velocities (Happel & Brenner 1965). Also, both M
and R are symmetric, as can be shown from the reciprocal theorem, and positive
definite, due to the dissipative nature of the system. Both properties apply for all
possible configurations of the N particles.

2.1. Expansion of the integral equation and formation of the grand mobility matrix

To develop our method, we begin with the integral representation for the velocity
field in Stokes flow. At any point in the fluid or within the rigid particles, the velocity
is given by (Ladyzhenskaya 1963)

N
w0 = uf—g= = | JyE-n50)ds,, (24)
87'5/11 a=1v 8,
where u*(x) is the velocity field in the absence of the particles, S, is the surface of
particle a, y is the location on the particle surface, and x is a field point in the
fluid-particle continuum. J;; is the free-space Green function or propagator for Stokes
flow, known alternatively as the Stokeslet or Oseen tensor, and is given by

Jyr) = i;w—;;z, (2.5)

where r = x—y, r = |r|. f;(») is the force density at the point y on the surface of the
particle. The summation indicates that the integration is to be performed over all
N particle surfaces. The force density can be expressed in terms of the fluid stress
tensor o, by

Li0) = 05() me(y), (2.6)

where 7, (y) is the surface normal vector pointing into the fluid. We further write
Fr=—|_f»as, @2.7a)
Li=-[_euty—afi)as,, 2.19)

where FY is the total force exerted by particle a on the fluid, and L§ is the total torque
exerted by the particle on the fluid measured relative to the ‘centre’ of the particle
(x%).

As mentioned in the Introduction it is possible to solve (2.4) numerically by
dividing the surface of each particle into elements and then resolving the linear
system of equations for the force densities f; subject to the total force and torque
conditions (2.7). While straightforward, this direct resolution can become computa-
tionally expensive when particles come into close proximity because of the large
number of surface elements required to resolve the singular force distributions
associated with lubrication. If the surface of each particle is divided into M elements,
the number of unknowns for the N-particle system is (3M +6) N: three components
of force density for each element, and the translational and angular velocity of the
centre of each particle. Thus, since there can be as many as 12 near neighbours in
three dimensions, the number of unknowns per particle can become prohibitively
large, precluding the use of this method for anything but static configurations of a
few particles.
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It is possible, however, to analytically include the singular force densities associated
with lubrieation directly in the integral equation, and thus reduce the required
number of surface elements. This can be accomplished by writing f; = f§+f?, where
the singular part f§ is known analytically and the order-one remainder f7 can be found
by solving a system of equations. To handle an arbitrary conﬁguratlon of particles,
the minimum number of elements M is 12 (12 possible near neighbours) in three
dimensions, and M = 6 in two dimensions. Specific configurations may require fewer
than 12 elements, but in concentrated suspensions close-packed arrangements occur
frequently. Thus, the minimum number of unknowns or degrees of freedom per
particle is 3M + 6 = 42, resulting in' 42N simultaneous equations to solve (15N in two
dimensions). The number of degrees of freedom with this method is still quite large,
however, making large dynamic simulation costly. We have developed an alternative
method that makes use of both mobility and resistance information and substantially
reduces the number of unknowns, while preserving lubrication and including
excellent many-body hydrodynamics. -

Rather than resolving the integral equation, we expand (2.4) in moments about
the centre, x* of each particle:

1
ui(x)—ui”(x)=—w Z:l Jy(x—x*) fi(y)dS,

0
+L - 0= =DV, . (28)
Equation (2.8) provides a representation for the velocity at any point in the fluid
in terms of a multipole expansion, with the nth multipole moment of particle « given

by
0.5 =— [ w-arias, 9)

The monopole or zeroth moment of the force density corresponds to the total force
(2.7a). The first moment or dipole has both symmetric and antisymmetric parts;
the antisymmetric part is the total torque (2.75), and the symmetric part is known
as the stresslet S3;:

8= =3 (@—aI+ U= Byln— S 88, (2.10)

The stresslet 53 is, in general, traceless, a consequence of continuity.

After the force and torque, which are prescribed quantities, the higher multipole
moments depend on the relative configuration of all N particles — they are induced
moments and must be found by solving a set of equations (see below). Depending
on the level of accuracy desired, the multipole expansion can be truncated at any
order, but to include the effects of lubrication, all moments are needed. Since we shall
introduce lubrication through the resistance matrix, we truncate the expansion after
the dipole terms with the exception of two higher multipole contributions that are
not induced but result from the finite size of the particle.

A single isolated sphere of radius a translating in an unbounded quiescent fluid
creates a velocity disturbance that may be written as

uj(x) = # (1+3a2V2) J, (x —x%) F2. (2.11)

2 FLM 180
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The sphere acts as a point force J;; plus a quadrupole contribution a?V2J,,, resulting
from its finite size. Part of the quadrupole-moment force density in (2.9) is not
induced by interactions with other particles, but is proportional to the total force
F% and depends on the sphere size and shape. This can be easily seen by writing the
quadrupole moment as ¢, = Ay, Fy,, where the tensor 4;,,, must be isotropic for
spheres, and the quadrupole-moment propagator V, V,J;; reduces to V2J;. For a
particle of arbitrary shape, the quadrupole moment will not simply reduce to a
Laplacian of J;; and (2.11) will not terminate after this term, Similarly, a sphere
immersed in a pure straining motion acts as a stresslet plus an octupole, creating a
velocity disturbance

. 1
i) = g (1+ V%) Ko e =) S, 2.12a)
Ky = 3V Iy +V; ). (2.12b)

We shall include both of these finite-size quadrupoles and octupoles in our truncated
moments expansion, so that the remaining multipole moments are all induced by
particle interactions; they are the so-called irreducible moments.

Thus, the velocity at any point in the fluid may be expressed in terms of the forces,
torques and stresslets exerted by the particles on the fluid as

1

wx) = uP )+ g

where the propagator for the torque R;; is known as a rotlet or couplet and is given
by
r
Rtj(") = eijkﬁk = elkj?}(vk Ju— Vi) (2.14)
To determine the motion of a particle « immersed in the flow field given by (2.13)

we make use of the Faxén formulae for spheres (Batchelor & Green 1972; note the
sign difference in the definition of S;;),

e .
Ue —u(x*) = .nl:a+(l+§a2V2)ui(x“), (2.15a)
aL o0 L
Q—-QF = g ‘ua3+1€ijkvjuk(xa) (2.158)
Sa

Here, u;(x), is the disturbance velocity field in (2.13) caused by the other par-
ticles, i.e. other than particle a itself and other than the impressed flow u.
ey = 3(V;u;+V, uy) is the rate of strain of the disturbance flow, E%; is the rate of strain
of the imposed flow, and 2° is the vorticity of the imposed flow. All velocity
disturbances are evaluated at the centre of particle a. Because the particles are rigid,
there is no rate of strain within the a particle; hence, the absence of a kinematical
property associated with particle « on the left-hand side of (2.15¢). Note the similarity
of the Faxén formulae and the form of the multipole expansion in (2.13).

Writing an equation like (2.15) for each particle «, we can construct a grand
mobility matrix 4 relating the translational velocity/angular velocity /rate of strain
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of each particle relative to the impressed flow to the force/torque/stresslet of all N

particles:
U-U~ F
[ _ ]=J//'[s], (2.16)

where U— U is a vector of dimension 6V containing the translational and angular
velocities of all NV particles relative to the impressed flow, —E® is a vector of
dimension 9N that repeats the impressed rate of strain for each particle — all particles
experience the same imposed rate of strain, F is a 6V vector containing the force
and torque exerted by the particles on the fluid, and S of dimension 9N contains the
particle stresslets. The grand mobility matrix .# is symmetric and positive definite
and may be conveniently partitioncd into submatricies:

M M
M = [ UF US], 2.17
Mgy Mes (217)

where the subscripts indicate the coupling of the various components. My, relates
particle velocities to forces and is what was called the mobility matrix M in (2.1)
(actually, it is an approximation to the true mobility matrix), Mg relates velocities
and stresslets, Mgp the rate of strain and forces, and Mg relates the rate of strain
to stresslets.

Since the grand mobility matrix in (2.16) has been truncated at the level of force
dipoles or stresslets, there are 11 unknowns or degrees of freedom per particle: 3
translational and 3 rotational velocities and 5 independent components of the
stresslet (recall that the stresslet is symmetric and traceless). We shall denote this
approximation to 4 as .4 . To include higher multipole moments, one simply
extends the vector of force moments on the right-hand side by the irreducible
quadrupole, octupole, ete. moments, while on the left-hand side, the kinematical
vector is extended with zeros as all higher velocity gradients within the particles or
from the imposed flow are zero. (Note, it is not meaningful to suppose that there is
an imposed quadratic flow field, because the boundaries creating this flow will
contribute to the motion of the particles to the same order as the curvature of the
flow.) The detailed elements of .# * are constructed from (2.15) and (2.13) along with
(2.14), (2.12) and (2.5); they are given explicitly in Appendix A using the notation
of Jeffrey & Onishi (1984) and Kim & Mifflin (1985).

M * is a far-field approximation to the interaction among particles and includes
terms up to O(r3), where r is a charaeteristic interparticle spacing. The leading error
comes from the neglected induced quadrupoles, which are O(r—¢) — a force propagates
as r ! and induces a quadrupole in a second particle of strength r~3, and this
propagates a quadrupolar velocity field that decays as 3, giving the O(r®) error.
This is the leading error to M. The errors to Mg or Mgz and Mg are smaller, being
O(r~7) and O(r~8) respectively. As constructed .# ® would appear not to contain any
two- or many-body interactions, and as written it does not. However, because the
stresslets are unknown, (2.16) must be solved as a system of equations to determine
U and S in terms of the given forces and the imposed flow, and the resolution of this
system will introduce many-body interactions. Before discussing the nature of these
many-body interactions, we shall first discuss how to include lubrication by use of
the resistance matrix. This is most easily described if we first work with the small
(as opposed to grand) mobility matrix Mz only and neglect, for the moment, the
stresslets.

2-2
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2.2. Adjustment for lubrication

In the absence of an imposed linear shear flow (E® = 0), the stresslets are all induced,
and it would seem reasonable to develop a method specifically for problems when only
forces and torques are applied, the F-T version. To include lubrication, we first invert
M to obtain a far-field approximation to the resistance matrix defined in (2.2).
Inverting the small mobility matrix has the effect of reflecting all force—velocity
interactions among all particles. This can be seen by examining the interactions
between just two particles.

An element of the resistance matrix R, gives the force on particle a due to the
velocity of particle 8. If we move particle £ at a prescribed velocity it will create a
velocity disturbance that decays as r~. This velocity disturbance will induce a force
in particle a because it is fixed, and this force will in turn create a velocity disturbance
that decays as r~2 — induced force strength 7! times velocity field due to a point force.
Upon arriving at the moving particle §, this velocity disturbance will induce a force
in this particle, because we must change the force exerted on it to keep it moving
at the prescribed velocity. The process of reflected interactions between a and g
continues to all orders in ™1, forming an infinite series. Inverting the mobility matrix
for these two particles with just the point-force interactions (J; only) sums this
infinite series of reflections. In Appendix B we show explicitly the equivalence of
inverting and summing for the interaction along the line of centres between two
particles. With N point-force particles, the infinite number of reflected interactions
among all N particles is summed.

Thus, the invert of My is a true many-body approximation to the resistance
matrix R of (2.2). In fact, the mobility invert reproduces the screening characteristic
of a porous medium. If we have a large system of NV particles and one particle is
moved, the resultant force experienced by a distant particle decays more rapidly
than 771, specifically as ™2 in three dimensions, because the interaction is screened
by the intervening fixed particles (Howells 1974; Brinkman 1947). This screening is
nothing more than the resultant of all the point-force reflections. Whatever
elements are included in the mobility matrix — point force, finite size, stresslet
interactions, etc. — upon inversion, reflections amongst all elements and all particles
are summed.

This many-body approximation to the resistance matrix still lacks, however,
lubrication. Lubrication would only be reproduced upon inversion of the mobility
matrix if all multipole moments were included. To include lubrication, we introduce
it in a pairwise additive fashion in the resistance matrix. For each element of M}
we add the known exaect two-sphere resistance interactions (Arp & Mason 1977;
Jeffrey & Onishi 1984 ; Kim & Mifflin 1985), which we shall designate as R,g, for the
two-body resistance matrix. However, part of the two-sphere resistance interactions,
the far-field part, has already been included upon the inversion of M. Thus, in order
not to count these interactions twice, we must subtract off the two-body reflected
interactions already contained in My}. The matrix composed of these two-body
infinite reflection interactions is denoted by R, and is found by simply inverting
a two-body mobility matrix containing terms to the same order in 1/r as M. Thus,
our approximation to the resistance matrix AR, which contains both near-field
lubrication and far-field many-body interactions is

R = My+R,;— RS, (2.18)
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To determine the motion of the particles given the forces and torques acting on them,
we solve the system of equations (2.2) with (2.18) as an approximation to the true
N-particle resistance matrix.

We have designated the above procedure as the F-T version, as only force—torque
interactions were included. It will be shown in the next section that this method works
well when there is no imposed linear shear flow. A more accurate version, and one
that is necessary with an imposed shear flow, includes the stresslets directly in the
grand mobility matrix ; our so-called F-T-S8 version. The invert of the grand mobility
matrix in (2.16) is the grand resistance matrix % :t

F Uu-u»
(s)=(Tee ) 219
which may be partitioned as
R R
R = [ shd F‘-’]. 2.20
Rsy Rse 220

Note that Ry + Mgk, ete. Rpy is simply the matrix in the upper left-hand corner
that relates F to U and is the same as R defined in (2.2). (At the level of interactions
included, Ry, is an approximation to the exact N-particle R.) Lubrication is included
in the same manner as was done for the small resistance matrix, i.e.

g = (./”w)—l"l'ng-’gg’B. (2.21)

The motion of the particles with prescribed forces, torques and the linear shear flow
is given by

The F-T-S version is clearly more accurate than the F-T version because more
many-body reflections have been included in (# ®)~. This additional accuracy has
come at the cost of increasing the number of degrees of freedom per particle from
6 to 11 and, since inverting a matrix is an N}, operation, where N, is the dimension
of the matrix, results in an (3)® fold (= 6.2) increase in computing time. The
many-body interactions are, however, quite significant and, as we shall show, produce
the effective viscosity of free suspensions.

To understand the nature of the many-body interactions, it is not necessary to
include lubrication, and we can return to (2.16) and (2.17). If we resolve (2.16) for
the unknown stresslets, we have

S=—Mgd: Mg F-Mg}:E>, (2.23)
and the motion of the particles is given by

From (2.24) we see that by including the stresslets we approximate the small mobility
matrix M (defined in 2.1) by

M = MUF—MUS 5 MEé J MEF' (2.25)

t Note, that because $ and E® are symmetric and traceless, # as written contains redundant
rows and columns and has no invert. The rows corresponding to £° must be written as E,,—E,,,

2E,,, etc. before inversion.
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The physical significance of the second term is the following: just as My} reflects all
the force—velocity interactions, Mgd reflects all the stresslet-rate-of-strain interac-
tions. This ‘dipole—dipole scattering’ gives the first approximation to the effective-
medium behaviour of a free suspension. It is not difficult to show (Batchelor 19704a;
Beenakker 1984) that for a force-free, torque-free suspension (F = 0), the average
stress, and hence the effective viscosity, is given by an appropriate average of Mz}.
Thus, this term represents the effective viscosity of the medium; it is actually the
effective viscosity with local structure. The second term in (2.25) takes the force
exerted by particle 8, induces dipoles (stresslets) in all other particles Mgg, which
are dipole—dipole scattered from all particles in the system Mgd, i.e. they propagate
through the effective medium, and end up incident on particle &, My¢. Note that
the subscripts in (2.23)—(2.25) contract to give the sequence of scatterings.

Thus, we have devised a method that preserves lubrication forces by including
interactions in the resistance matrix, and reproduces both the screening characteristic
of a porous medium, My}, and the effective viscosity of free suspensions, Mzd. We
shall show in the next section that this method, either the F-T version in the absence
of an imposed shear flow, or the more accurate F-T-S version, gives excellent
agreement with the available calculations for N particles. Not surprisingly, there is
an improvement in accuracy by going from the F-T to the F-T-S version.

Two final remarks are in order. First, the approximation to the mobility and
resistance matricies in the two versions preserves the positive definiteness of the
matricies. Positive definiteness can easily be lost unless the many—body interactions
are approximated properly. For example, if the F-T-S method is employed without
the finite-size terms, i.e. the terms of O(r~%), positive definiteness can be lost.

And secondly, it may appear that the computation times for dynamic simulation
are quite large owing to the necessity of inverting the grand mobility matrix at each
time-step. However, significant changes in the grand mobility matrix only occur when
the relative separation of two particles has changed by an amount comparable with
the particle size. By contrast, the resistance matrix, which contains lubrication forces,
changes on the scale of the lubrication forces, which vary with the separation of
particle surfaces. Thus, there are two natural length (time) scales, and a multiple
timescale method can be used. We only need invert (actually solve the equation set)
the small resistance matrix R in (2.22) each time-step; the grand mobility matrix
M *® can be inverted infrequently — just how infrequently depends on the speed at
which large-scale particle relative motion occurs.

3. Results

In this section we shall present static and dynamic simulation results for particles
sedimenting in a quiescent fluid and for systems of neutrally buoyant particles
immersed in a linear shear flow. To demonstrate the accuracy of our method we shall
first compare some of our sedimentation results with those of Ganatos et al. (1978)
and Kim (1985, unpublished work). Next, we shall present both static and dynamic
results for other sedimenting systems that have not been previously considered. We
shall also show that for linear chains of spheres our method reproduces slender-body
theory. For groups of sedimenting particles the pairwise additivity of velocities
approach can give reasonable estimates of the instantaneous particle velocities. In
shear flow this is not the case, and we show by a simple example that incorrect physics
are produced by the pairwise additivity of velocities. It is also shown that for particles
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Fioure 1. Comparison of the drag coefficients A = F/6nual for horizontal chains of identical
spheres sedimenting perpendicular to the line connecting their centres calculated using the F-T
version (X ) with the numerical results of Ganatos et al. (1978) (@). The centre—centre sphere
spacing r is 4 radii. Results are shown for chains of 5, 9 and 15 spheres. Only half the chain is shown
as the drag coefficient is symmetric about the central (0) sphere.

undergoing Brownian motion the superposition of velocities leads to incorrect
behaviour, whereas our method captures the proper physics.

3.1. Sedimenting systems

The first cases we consider are horizontal chains of spheres uniformly spaced at a
centre-to-centre distance of four radii, sedimenting perpendicular to the line con-
necting the centres. The number of spheres in the chain is varied from three to fifteen.
Because these sphere configurations are transitory, these results are instantaneous,
applying only for the initial configuration. Figure 1 shows a comparison of our
simulation results, represented as x’s for the drag coefficient A, defined as
A = F/6nualU, where F is the applied force, with the results of Ganatos et al.
represented as solid circles, for five-, nine- and fifteen-sphere chains. These results
were computed using the F-T version described in §2, though the F-T—S version gives
identical results, owing to the relatively large interparticle spacing. The solid line
connects spheres in the same chain. Results are shown only for half of the spheres
in the chain because, for chains with odd numbers of spheres, the drag coefficient is
symmetric about the central sphere and the angular velocity antisymmetric. Sphere
number zero represents the central sphere.

The agreement obtained between the two methods is seen to be excellent. The
largest discrepancy between any of the results displayed in figure 1 is less than 19%,.
Although Ganatos et al. ascribe an uncertainty of only 0.02 %, to their drag-coefficient
results for these configurations, an error of approximately 0.5 %, is introduced through
the imprecision of reading the data from their plots. Thus, the less than 1 9, difference
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Ficure 2. Comparison of the drag coefficient A = F/6nual for horizontal chains of seven
sedimenting spheres calculated using the F-T version ( x ) with the numerical results of Ganatos
et al. (1978) (@). The sphere centre—centre spacing r is varied: r = 2.6, 2.2 and 2.005. Only half
the chain is shown as A is symmetric about the central sphere.

between our results and theirs is of marginal significance. From figure 1, it is apparent
that, as the number of spheres in the chain is increased, the spheres fall faster, with
the central sphere falling considerably faster than the outer spheres. For a chain of
fifteen spheres, the central sphere falls at nearly twice the speed of an isolated sphere,
while the spheres on the ends fall at only about 1.6 times the speed of an isolated
sphere.

Next, we consider sedimentation of horizontal chains of seven uniformly spaced
spheres, with the dimensionless centre-to-centre distance r (r is non-dimensionalized
by the sphere radii) between spheres varied from 2.005 to 2.6. Again, these are
instantaneous results. Figure 2 shows a comparison of our results using the F-T
version, represented as Xx’s, with the results of Ganatos et al. represented as solid
circles. The agreement is again excellent. Note that, as the spheres are positioned
closer together, they fall faster. For these results, Ganatos et al. assign a maximum
uncertainty of 0.49, to their » =2.005 drag-coefficient results. The maximum
discrepancy between our results and theirs is about 1.5%,. Though not presented
graphically, the maximum deviation between angular velocities at r = 2.005 is 12%,.
Ganatos et al. ascribe an uncertainty of 59, to their angular velocity results at this
spacing. The discrepancies apparent between our simulation results and the
collocation results of Ganatos et al., though small, can be reduced even further
through the use of the F-T—S version. Table 1 shows a comparison of A- and 2-values,
calculated using the various methods, for a seven-sphere chain with a centre-to-centre
spacing of 2.005. With the inclusion of stresslet interactions, the maximum dis-
crepancy in A between our results and those of Ganatos et al. is reduced to about
0.6 %, while that for Q is reduced to 10.6 9.
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Sphere number 0 1 2 3

A (F-T) 0.410 0416 0.439 0.515
A (F-T-S) 0.405 0.411 0.436 0.511
A (Ganatos et al. 1978) 0.405 0.410 0.433 0.512
A M) 0.397 0.403 0.423 0.502
Q (F-T) 0 0.0348 0.0974 0.219
Q (F-T-S) 0 0.0390 0.113 0.240
Q (Ganatos et al. 1978) 0 0.0352 0.111 0.231
QM) 0 0.0324 0.0865 0.278

TasLE 1. Comparison of the results of various methods for a horizontal chain of seven nearly
touching (r = 2.005) spheres sedimenting vertically

Table 1 also displays results that correspond to forming M by pairwise additivity
of velocities to the same order in 1/r as the F-T version, i.e. no adjustment for
lubrication. These results (M) are in reasonable agreement with the results of the other
methods: A deviates by at most 2 %, from Ganatos et al., and 2 as much as 22 %,. This
simple method provides acceptable results in this case because there is no motion
along the line of centres — spheres are not being forced toward each other —and
lubrication forces are not needed. However, if one continued to use the superposition
of velocities to follow the particle dynamics, aphysical results would soon arise,
because motion along the line of centres develops quickly. Although not presented
here, the drag coefficients for chains of particles falling vertically show equally good
agreement with those calculated by Ganatos et al.

We next consider the problem treated by Kim (1985, unpublished work) — three
identical spheres located at the verticies of an equilateral triangle of side L falling
in the direction perpendicular to the plane of the triangle. This configuration is a
stable one, meaning that the spheres will remain at the verticies of the triangle for
all time, and, in contrast to the chains of particles considered by Ganatos et al., which
possessed planar symmetry, this problem is fully three-dimensional. Kim solved this
problem using both the method of twin multipole expansions and the method of
reflections. His results are strictly valid for sphere—sphere spacings of 2.5 radii or
greater, as his series expansion converges slowly for closer particle spacings. Kim’s
results for the drag coefficient A are shown as the solid line in figure 3, along with
an extrapolated curve (dotted) calculated by Kim for closer particle spacings. The
dashed line is the result one would obtain using a pairwise additivity of velocities,
and shows a deviation of 16 %, at a separation of 2.5. Our results using the F-T version
are indicated by x’s again, the agreement is quite good. The two results deviate
slightly for » < 2.5, with our results displaying a minimum in A at r & 2.02, while
Kim’s extrapolated results decrease monotonically. We believe the minimum is real,
because for two spheres sedimenting perpendicular to the line joining their centres
there is & minimum in A (maximum velocity) at r & 2.01 (Batchelor 1976). Thus, it
seems reasonable that a minimum exists for groups of more than two spheres.t

This is borne out by the next simplest stable arrangement of sedimenting particles
(Hocking 1964) — spheres located at the corners of a square of side L falling

+ The lubrication approximations given by Jeffrey & Onishi (1984) for the resistance functions
Y4, etc., which are accurate to O(£ In£~1), where £ = r—2, do not predict the minimum for two
spheres. Only by extending the asymptotic formulae to terms of O(§), whose coefficients we fit
numerically, is the minimum calculated correctly.
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Ficure 3. Comparison of the drag coefficient A = F/6rualU for three identical spheres at the
verticies of an equilateral triangle of side L sedimenting perpendicular to the plane of the triangle.
The X are the results using the F-T version, the solid line is a theoretical calculation by Kim (1985,
unpublished work). The dotted portion of this line for L < 2.5 is an extrapolation of Kim’s
calculations; the series converges very slowly at these close separations. The dashed line is the drag
coefficient predicted by pairwise additivity of interactions in the mobility matrix.

perpendicular to the plane of the square. Our results for the drag coefficient A using
the F-T version are shown in figure 4. A is consistently smaller for four spheres than
for three (compare figure 3), and we see the presence of a minimum at L = 2.02. As
was the case for the equilateral triangle, all spheres rotate at the same speed, with
each sphere rotating about a line that is perpendicular to the line connecting the
sphere centre to the centre of the square. At L =10, 2 =0.0144; at L = 2.5,
2=0213; at L=21, 2=0.244 (this is approximately the maximum); at
L =20001, 2 =0.132, and as L2, 2->0 logarithmically. Similar behaviour will
be observed for all regular polygons falling perpendicular to the plane containing
the verticies. As discussed by Bretherton (1964), Hocking (1964) and Jayaweera,
Mason & Slack (1964) these configurations are stable at zero Reynolds number.

Another example of a static configuration of particles that provides a good check
on the accuracy of our method is to examine the approach of the drag on a chain
of spheres to that predicted by slender-body theory. For slender particles of
spheroidal shape translating at constant velocity, Chwang & Wu (1975) give the
following expressions for the force or drag coefficients Cr, and Cp:

Ch, =§W[1+0@)2], (3.1a)

Cp, = %m[l +0<%>2], (3.1b)

where a and [ are the half-lengths of the minor and major axis respectively; a/l < 1.
The drag coefficients Cp and Cp, correspond to motion along and perpendicular to
the major axis of the spheroid respectively. The force in each case has been non-
dimensionalized by 6nuaU. For a particle composed of N spheres, [/a = N. Shown
in table 2 are our calculated drag coefficients using the F-T-8 version for chains of
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Ficure 4. The drag coefficient A = F/6nualU for four identical spheres at the corners of a square
of side L sedimenting perpendicular to the plane of the square calculated with the F-T version.

N spheres at a centre—centre spacing of 24107, The agreement is quite reasonable
with a maximum deviation of 109%,. A large part of this deviation comes from the
spheres at the end of the chain, and we also show the results for the drag coefficients
when the contribution to the total drag from the spheres at either extremity is
removed; the agreement improves considerably. Such good agreement is actually
quite remarkable because a chain of spheres is neither a spheroidal particle, nor does
it conform to the requirement of slender-body theory that the radius vary slowly
along the particle axis. Examination of the local drag coefficients, i.e. for each sphere
along the chain, shows a variation of roughly 409, with spheres near the centre
having a drag coefficient lower than that given by slender-body theory, and spheres
near the end having a larger drag coefficient. The proper In (2N) scaling of (3.1) is,
however, reproduced by our simulation method (cf. below for shear flow).

We have also computed some dynamic trajectories for sedimenting particles.
Ganatos ef al. made an extensive study of three spheres initially located on the same
horizontal line falling under the action of gravity. Generally, our results agree well
with theirs, with the exception that at long times the ultimate location of particles
can be sensitive to specific earlier configurations. For example, in figure 5(a, b) we
show the trajectories of three identical spheres sedimenting in the negative y-direction
that were initially located at y = 0, 2 = —5, 0 and 7, where the coordinates have been
non-dimensionalized by the sphere radius. (This configuration corresponds to C = 1.4
in the notation of Ganatos et al.) The time increment between successive points is
10 dimensionless time units (sphere radius over settling speed of an isolated sphere);
the trajectories were terminated at a total time of ¢ = 600. The trajectories shown
in figure 5(a) were calculated with the F-T version and agree with those of Ganatos
et ol. until ¢t &~ 400 (y & —525). At larger times the trajectories are quite different.
Apparently, the trajectories are very sensitive to the sphere configurations in the time
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Ficure 5. Trajectories of three identical sedimenting spheres. The spheres lie in the same plane
with initial positions y = 0 and 2 = —§5, 0, + 7 based on sphere radius. The increment between dots
is constant at 10 dimensionless time units. (a) Trajectories calculated with the F-T version. (b) Same
trajectories calculated with the more accurate F-T—S version. Note the different trajectories for
y < —500, indicating a pronounced sensitivity to specific configurations.
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F1oURE 6. The location of sphere centres that initially started at the corners of a square when they
all lie in a line, calculated with the F-T version. The three sets of x correspond to squares of side
length L = 3 (top row), 4 (middle row) and 5 (bottom row) respectively. The applied force is in
the negative y-direction, parallel to the initial square side. The squares will periodically invert
themselves as they fall.

interval 350 < ¢ < 400. A further indication of this sensitivity is shown in figure 5 (b),
where the same initial configuration is run using the F-T-S version. For times greater
than 400 (y < —525), completely different trajectories are observed — different from
both the F-T results and the calculations of Ganatos et al. The sensitivity to specific
configurations does not imply that our method is losing accuracy or fails to capture
some physics. Rather, it is well known that dynamical systems with nonlinear
interactions often display sensitivity, and such behaviour is to be expected.t The
above example should not be interpreted as implying that after a certain time our
results always deviate from those of Ganatos et al. Agreement or disagreement
depends critically on the initial condition.

We next consider the problem, first studied by Hocking (1964), of four spheres
located initially at the corners of a square of side L with an applied force in the
direction of one of the sides. As discussed by Hocking, this configuration is not stable
and is actually periodic in time. Initially the top two spheres are drawn down and
inward, and the bottom two move down and outward. This process continues until
all spheres lie on the same line. Since this configuration has reflection symmetry upon
both changing the sign of the imposed force (F——F) and in the plane containing
the force vector, the spheres will reform the square with the groups of upper and lower
particles interchanged. This process will repeat indefinitely. The time required for the

1t We also performed simulations with a version intermediate between F-T and F-T-S. Putting
M, diagonal propagates all dipole—dipole interactions through the pure fluid rather than the
effective medium, and results with such a version are qualitatively the same as with the F-T-8
version. The x-positions differ slightly from those in figure 5b, but the ordering of particles is the
same.
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F1oURE 7. The location of sphere centres that initially started at the corners of a cube when they
all lie in the same plane, calculated with the F-T version. The three sets of X correspond to cubes
of side L = 3 (top row), 4 (middle row) and 5 (bottom row) respectively, Only half the sphere centres
are shown because of the reflectional symmetry in the (y, 2)- and (y, z)-planes; the applied force is in
the negative y direction. The cube configuration periodically inverts itself.

square to invert itself is twice the time required for the spheres to form a line after
being initially placed at the corners of a square. Figure 6 shows the location of the
centres of the spheres when they all lie on a line for square sides L = 3, 4 and 5, The
time required for complete inversion for the three cases is 45.4, 96.6 and 174.2
respectively ; the time increases considerably as the size of the square increases. (Note,
not all positions of spheres in a line that are reflectionally symmetric about the plane
containing the force, i.e. symmetric in x in figure 6, will produce periodic trajectories.)
These results were calculated using the F-T version. With the F-T-S version, the
particle velocities are slightly smaller, and the period for inversion with L = 3
increases to 45.4 from 48.4.

Similar behaviour is observed for spheres placed at the corners of a cube of side
L. The top four spheres all move inward, towards the centre of the cube and the
bottom four outward as the group falls, until at one time all spheres lie in the same
plane. We now have three-fold reflectional symmetry about three perpendicular
planes — two parallel and one perpendicular to the direction of the applied force.
Shown in figure 7 are the centres of half the spheres when they all lie in the (y, z)-plane,
for three cubes L = 3, 4 and 5, computed with the F-T version, Only the x-locations
of half the sphere centres need be given because of the symmetry of the configuration.
The periods for inverting the cube are: 19.3, 32 and 50.2 respectively, considerably
shorter than for a square. This inversion process is not necessarily limited to squares
and cubes. Other regular polyhedrons may display similar behaviour.

The above-calculated dynamics are quite stable in a numerical sense. Inverting
squares were run for several periods (= 10) and showed no loss of accuracy (6
significant figures). We tested the sensitivity to the initial configuration by perturbing
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a single sphere of a square of side 3 a small amount — initial coordinate (—0.01, 0)
rather than (0,0). The square succeeded in maintaining the first inversion with the
same 0(0.01) perturbation, but by the time of the second inversion for the unperturbed
square, the square configuration is lost and the subsequent dynamics are completely
different. This is another illustration (recall figure 5 for three spheres with the F-T
and F-T-8 versions) of the sensitivity of particle trajectories to initial conditions,
suggesting, as one would expect, the possibility of chaotic behaviour for particle
dynamics.

The last example of sedimenting systems is the dynamics of the horizontal chains
discussed previously. We observed some rather interesting behaviour for chains with
initial centre—centre spacing of 2.005 at N =7, 8, 9 and 11 spheres (the only cases
examined). In all cases, the central N—4 spheres pulled away from the spheres at
either end (cf. drag coefficient A in figure 1), leaving the four end spheres trailing in
two separate groups. At long times the two spheres in each group may be in contact.
The central N —4 spheres formed the following configurations: for N = 7, a triangle,
which only comes into full three-way contact for very long times, ¢t > 200; for N = 8,
a square, which periodically inverts itself; for N = 9, a pentagonal cluster with each
sphere in contact with two neighbours; and for ¥ = 11, a heptagonal cluster. It is
not known whether this unusual behaviour persists for arbitrary N, nor the degree
to which it depends on the initial separation between spheres.

3.2. Sheared systems

While the method that we have developed accurately reproduces both the drag
coefficients for instantaneous configurations and the dynamics of sedimenting
particle systems, the real power of the method to maintain lubrication forces has not
been exploited. Indeed, for some simple instantaneous configurations of sedimenting
particles, the superposition of velocities or pairwise additivity of mobility interactions
works well (cf. table 1). For sheared systems, or when there is significant relative
motion along the line of centres of particles, however, this is no longer true; even
instantaneous results are in gross error and miss essential physics. We illustrate this
by the following two examples.

Four identical spheres are placed in a line with a centre—centre spacing of 2+ 108,
The line joining the centres is oriented along the compressive axis of a simple shear
flow. The two central particles, numbers 2 and 3, will move towards each other with
relative velocities along the line of centres that should be small, i.e. the same order
of magnitude as the surface separation O(107%), because of lubrication. Using the
F-T-S version, we find U2— U3 = —6.5x 1075, which is not very different from the
exact result for two isolated spheres of —4 x 1075. There is a slight enhancement of
the relative velocity of the central spheres caused by the two end spheres. The
pairwise additivity of mobility interactions, however, gives an enormous relative
velocity, U2— U® = — 1.9, five orders of magnitude too large! Rather than moving very
slowly toward one another, particles 2 and 3 would physically touch and overlap if
there were no other repulsive forces present to prevent contact. The pairwise
additivity of velocities completely misses the physics of particle interactions when
there is significant relative motion along the line of centres between particles. (Note,
for this small cluster, the F-T version gives essentially identical results.)

Similar aphysical behaviour is displayed by pairwise additivity of mobilities in a
different context. To simulate the dynamics of particles subject to Brownian motion
(cf. Bossis & Brady 1987) requires the evaluation of the configuration space
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N 8,/8%

5 1.10
10 1.10
15 1.04
20 1.01
25 0.998
30 0.991
40 0.990
49 0.993

TasLE 3. Comparison of slender-body theory and simulations for the stresslet of a linear chain of
N spheres. The sphere centre—centre spacing is 2+ 107%. The theoretical formula for the stresslet
is given in equation (3.2).

divergence of the mobility matrix (Batchelor 1976) VM = V+R~1. For four particles
aligned in a row and numbered 1, 2, 3 and 4, the velocity of each particle from V:R™!
is along the line of centres. With a centre—centre spacing of 2+ 1072, the F-T version
gives: U' = —4.73, U? = —1.61, U® = 1.61 and U* = 4.73. Pairwise additivity in the
mobility matrix gives: U = —1.62, U? = —0.022, U® = 0.022 and U* = 1.62. While
not as dramatic as the previous example, the differences are quite significant and have
a profound effect on the dynamics of Brownian particles. As the chain of spheres
increases in length, the superposition of velocities gives essentially zero relative
velocity for central particles, with the two particles at the end moving as they would
if they were the only two particles in the system. Two isolated spheres at a separation
of 24 1072 move in opposite directions with velocities of magnitude 1.61. The proper
behaviour of a chain is completely different, with central particles flying apart at
speeds of 1.61, and each additional particle in the chain adding approximately
2x1.61 = 3.22 in relative velocity. While this Brownian contribution does not lead
to as catastrophic behaviour as in shear flow, i.e. particles will not overlap, the
dynamics of suspensions of such particles would be fundamentally different.

Another example that demonstrates the accuracy of the simulation method for
sheared systems is the approach to slender-body theory for linear chains. A chain of
N spheres almost in contact, i.e. a separation of 241075 should act, at least
instantaneously, as a rigid rod. For force- and torque-free spheroidal rods, the
relevant quantity is the total stresslet that the rod exerts on the fluid. Batchelor
(1970b) has shown that the component of the stresslet along the axis of the rod S5
is given by

1 (l/a)® 2
SSB = 2§Q1['ua3E125 E((zl/T(Q)?g' [1 +0 (%) ] , 3.2)

where a and [ are the half-lengths of the minor and major axis, respectively, and E,,
is the component of the rate-of-strain tensor along the major axis. For a chain of N
spheres, a is the radius and N = l/a. Table 3 shows a comparison of the total stresslet
8,,, found by summing the stresslets of the individual spheres, and (3.2) for the
slender-body prediction. There is a maximum deviation of 109% and a slight
minimum that occurs for N = 37. The reported results are for spheres that are
individually fixed in a simple shear flow. At these close spacings identical results are
obtained for freely suspended spheres. As the spacing between particles increases, the
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stresslets for fixed and free particles deviate. A similar calculation using the F-T
version gave the proper scaling with sphere number, but the coefficient is uniformly
smaller by roughly a factor of 2, i.e. a 509 error.

4. Conclusions

The simuldtion method presented in this paper has been shown to provide accurate
results for a variety of problems. The method is completely general — all configura-
tions are treated in the same way; no special precautions need be taken to simulate
the dynamics of widely spaced or near-contact arrangements of spheres. Both
versions of the method reproduce the screening characteristic of a porous medium
upon inversion of the mobility matrix, and the F-T-S version goes further in
generating the effective medium behaviour of free suspensions. Accuracy improves
from the F-T to F-T-8 version, so in principle a tradeoff between accuracy and
computation time can be made, although the effective medium aspect of the F-T-S
version is a highly desirable component.

It seems appropriate at this point to comment on the amount of computer time
required by the various versions of our simulation method. For each version, a matrix
must be inverted and a matrix equation then solved. These matrix manipulations
require O(N®) computer operations, while other aspects of the program, such as
forming the mobility and resistance elements, require only O(N?) operations. For
problems with planar symmetry, the F-T version requires the inversion of a 3N x 3N
matrix and the solution of a 3N system of equations, which amounts to O(18 V%)
operations (3(3N)® for inversion plus #3N)® for solution), while for fully three-
dimensional problems, O(144N3) operations are required. The F-T-S version with
planar symmetry requires O(112N3) and O(702N3) operations in three dimensions.
Recall, however, that the mobility matrix need not be formed frequently, so, at most
timesteps, only a matrix solution of a smaller equation set, and not an inversion, need
be performed.

To get an appreciation of what these operation requirements imply, let us compare
the operation requirements of our method with those of the collocation method of
Ganatos et al. (1978). For configurations with no near-touching spheres, their method
requires four boundary points per sphere, which translates to 12 unknowns per
sphere. Their method does not require a matrix inversion, only a solution. However,
their matrix does not appear to be symmetric (they do not mention that it is), so
O(576.N3) operations are required. Our F-T version represents a 32-fold improvement
in computer time, and our F-T-S version a five-fold improvement, over the
collocation method of Ganatos et al. Much more substantial savings are achieved,
however, when spheres come near contact. For such configurations, Ganatos et al.
may require 12 boundary points, resulting in O(15 552 N3) operations. Now, the F-T
version offers an 864-fold reduction in computer time and the F-T-S version a
138-fold reduction. Calculations without planar symmetry were not performed by
Ganatos et al., and it is not known what the computational demands are for a fully
three-dimensional collocation method.

The operation requirements of the direct resolution of the integral equation for
Stokes flow that analytically accounts for the singular force densities discussed in §2
are O(562N3) for planar symmetry and O(12348N3) for fully three-dimensional
systems. Here, we have assumed a minimum number of surface elements of 6 in two
dimensions and 12 in three dimensions, corresponding to the maximum number of
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near neighbours. Qur F-T-S8 version provides a 5-fold and an 18-fold saving in two
and three dimensions respectively. The accuracy of this direct resolution method has
not been fully tested, however, so the number of surface elements required can only
be estimated. The above comparisons apply for instantaneous configurations only.
In dynamic simulation both methods permit multiple time-stepping, and full
comparison must await future trials.

The method that we have developed thus appears to be both accurate and
computationally efficient. Although we have demonstrated the method with only a
few examples it should be clear that a wide variety of problems may now be addressed.
External forces other than gravity, as well as interparticle forces may be included
with no modification to the method. The encouraging results with slender-body
theory suggest that particles of complex shape may be modelled by groups of spheres.
With interparticle forces these groups will be able to model particles with internal
degrees of freedom, such as micromechanical models of polymers and, with the
inclusion of Brownian motion as indicated in §3 an even broader class of problems
can be addressed. In short, we have developed a method to accurately dynamically
simulate a finite number of spheres subject to hydrodynamic, external, interparticle
and Brownian forces.

In the method that we have developed, we have only considered identical spheres,
but the extension to a distribution of sphere sizes is straightforward. The only
additional requirements are the hydrodynamic interactions between different-sized
spheres, and these are available in the work of Jeffrey & Onishi (1984).1 Non-spherical
particles can be modelled by simply ‘joining’ spheres together as in the slender-body
examples discussed in §3. However, it may be possible to treat non-spherical particles
directly, because the mobility matrix to the level of dipoles is not difficult to
construct. In fact, for ellipsoidal particles all the required formulae are in the work
of Kim (1986). Lubrication interactions for the resistance matrix are also available
(Cox 1974). An approach such as this has the advantage over joining spheres together
of reducing the number of degrees of freedom per particle and thus saving
computation time.

Other extensions much more complex than the above are also possible. The method
can be (and has been, cf. Bossis & Brady 1984) easily modified to simulate infinite
systems, i.e. suspensions. Additional issues arise here in the use of periodic boundary
conditions and the non-convergent nature of the long-range hydrodynamic interac-
tions, but these can be handled in a rigorous fashion (Brady & Bossis 1985). Indeed,
since the F-T-S version reproduces the effective-medium behaviour, one is a long
way towards a proper treatment of the many-body hydrodynamic interactions in
suspensions. Finally, the method can also be extended to include the presence of solid
boundaries (Durlofsky 1986), enabling the investigation of boundary effects in
suspensions.

This work was supported in part by the National Science Foundation under grants
PYI CBT-8451597 and INT-8413695 and by the Centre de Calcul Vectoriel pour la
Recherche.

t Unfortunately, the resistance elements for the force-shear and stresslet-shear couplings (R ¢
and Rgg in (2.20)) for unequal spheres are not yet available.
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Appendix A. Elements of the grand mobility matrix
The grand mobility matrix .# in (2.16) written in terms of individual elements in

the notation of Jeffrey & Onishi (1984) and Kim & Mifflin (1985) is

U, —u®(x*) anaaﬂ...51151/,...5_“9;/,...
U,y —u(xr) aﬁzaﬂﬂ:...Eﬂa‘E#/?....gﬂ?g/,ﬂ...
e boby oo i hiy..
Q2,-2° = bﬂabﬂﬂ.....c,,,_cﬂ/.,...-ﬁﬁ?ﬁﬂﬂ...
—E® gaagaﬂ...hmhxﬂ...mumzl,...

—E% GpuGpp - PpuPrgg .- Mp Mgy ...

(A1)

We shall non-dimensionalize all lengths by the sphere radii @, and the individual
matricies @, b, ete. by 6nua”™, where n = 1 for a, 2 for b and 3 for the remaining. The
previous authors used the more natural nondimensionalizations given by the Faxén
formulae (2.15), but we have used the same 6mu factor for convenience. With the
centre—centre separation of spheres a and £ denoted by r and the unit vector joining

aff = 28 €€+ Yag(0y—e;e),

b?}d = .’lgp €ijk €k

cf = xge;e;+Y5a(0;—epe;),

93 = ¥0gle e;—10;) e+ Yose; 0yt ;0. —2e;,¢5e;),
hfy = yuslei et e e ),

m?ﬁcl = %x;uﬂ(ei e;—10y) (ex e~ 405s)

+éy;';(ei O epte;dye te b e +e; b, e—4e e, €)
+ gz;';,(a,.k Oy + 0 05— 0;; 8, e e84, + dyepe

tee5e.0,—e¢ é‘j, er—e; 0y e, —e 05 —e; 0, ;).

eh=ap=1 ah=ap =§"—1r7
Yh=yn=1 yh=yn =¥+
y?l =—y5=0, yh=—yh=—¥7"
xf,=a5,=4% ah=x5=5%"

C — 90 = C — 30 = —3
¥h=v=% y=ya=—¥"3

afy=—af, =0, xfy=—xf =3y"-—3r,
¥h=~-y%=0, y,=—yl =",
Yh=95h=0, yh=yh=—b"
== efh=al= i,

m_ am_ 9 m — ,m — 9,~3__ 36,5
Ym=Y2=i10 Y12=Yn=4 5T

M_m—9  M — M — 95
i=ch =% Mm=z2=b"%

)

a to B, e; = r,/r, the symmetry of the two sphere geometry enables us to write

)

(A2)

At the level of the approximation in (2.13) and (2.15), the scalar mobility functions

(A3)
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Appendix B. Equivalence of inverting mobility matrix and summing
reflected interactions

In order to show the equivalence of inverting a mobility matrix and summing
reflected interactions, we consider the simple problem of computing the resistance
interaction along the line of centres for two spheres. We shall do this at the level of
point forces only. We have two spheres, 1 and 2, and move sphere 2 relative to 1 along
the line joining their centres and wish to calculate the total force that must be exerted
on particle 1 to keep it fixed. The velocity field created by sphere 2 is simply (all
quantities are dimensionless)

u; = 3 y(x—x*) Uj. (B1)
Incident on sphere 1, this velocity field induces a force in sphere 1, because it is held
fixed, given by Faxén’s law (2.15a)
Fy = —4J(x*—x?) U}. B2)
This induced force, which particle 1 exerts on the fluid, propagates a velocity field
uy = {y(x—x*) F} = —§Jy(x — x*) {J (' —x*) UL, (B3)

which in turn induces a force in particle 2, and so on. In general, the force particle
1 exerts on the fluid owing to the motion of particle 2 is

F = —§Jij(x1—x2) Uf—yu(xl-xz)yjk(x2—x1)ykz(xl—x2) Ui—.... (Bg)

Taking the components along the line of centres, each J;; reduces to 2/r, where r is
the centre-to-centre spacing.

If we denote the scalar resistance function relating the force on 1 to the velocity
of 2 along the line of centres X, in keeping with the notation of Jeffrey & Onishi
(1984) (note, x%, is the corresponding mobility element).

© /g\2m-1 2,1 :
X4a=-—1% (g) =—m. (B 5)

n=1

As shown by Jeffrey & Onishi (their equation (1.15)), the scalar resistance functions
X4, X4, etc. can be related to the scalar mobility functions zf,, =, etc. through
inversion of a matrix

X4 sz) (xfz x?2>—1
= . B6
(Xi‘z X‘zqz Xy Ty (B 6)

(The full mobility matrix inversion decouples for this component.) Using the
point-force approximations from (A 3): 2% = 2%, = 1, 2§, = 23, = 3/2r, inverting
(B 6) gives precisely (B 5) for X4,

This simple example shows the equivalence of inverting the mobility matrix and
summing an infinite series of reflections. Whatever elements are used in the mobility
matrix — point force, dipole, quadrupole, etc., — all reflected interactions are summed.
It is not difficult to carry out a similar sum for the interaction of 3 spheres whose
centres lie along the same line. A few terms in the force series equivalent to (B 4)
will rapidly show that the inversion of the mobility matrix sums all reflected
interactions among all particles. With this simple example one can also start to see
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the nature of screening for fixed particles, because the series equivalent to (B 4) will
now have contributions from the third body that are of opposite sign to those for
only two particles.
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