7 research outputs found

    Chimpanzees combine pant hoots with food calls into larger structures

    Get PDF
    This work was supported by the Swiss National Science Foundation (PP00P3_163850) to S.W.T. and the NCCR Evolving Language (Swiss National Science Foundation Agreement #51NF40_180888).A growing body of observational and experimental data in nonhuman primates has highlighted the presence of rudimentary call combinations within the vocal communication system of monkeys. Such evidence suggests the ability to combine meaning-bearing units into larger structures, a key feature of language also known as syntax, could have its origins rooted within the primate lineage. However, the evolutionary progression of this trait remains ambiguous as evidence for similar combinations in great apes, our closest-living relatives, is sparse and incomplete. In this study, we aimed to bridge this gap by analysing the combinatorial properties of the pant hoot–food call combination in our closest-living relative, the chimpanzee, Pan troglodytes. To systematically investigate the syntactic-like potential of this structure, we adopted three levels of analysis. First, we applied collocation analyses, methods traditionally used in language sciences, to confirm the combination of pant hoots with food calls was not a random co-occurrence, but instead a consistently produced structure. Second, using acoustic analyses, we confirmed pant hoots and food calls comprising the combination were acoustically indistinguishable from the same calls produced in isolation, indicating the pant hoot–food call combination is composed of individually occurring meaning-bearing units, a key criterion of linguistic syntax. Finally, we investigated the context-specific nature of this structure, demonstrating that the call combination was more likely to be produced when feeding on larger patches and when a high-ranking individual joined the feeding party. Together our results converge to provide support for the systematic combination of calls in chimpanzees. We highlight that playback experiments are vital to robustly disentangle both the function this combination might serve and the similarities with combinations of meaning-bearing units (i.e. syntax) in language.Publisher PDFPeer reviewe

    From collocations to call-ocations : using linguistic methods to quantify animal call combinations

    Get PDF
    Emerging data in a range of non-human animal species have highlighted a latent ability to combine certain pre-existing calls together into larger structures. Currently, however, the quantification of context-specific call combinations has received less attention. This is problematic because animal calls can co-occur with one another simply through chance alone. One common approach applied in language sciences to identify recurrent word combinations is collocation analysis. Through comparing the co-occurrence of two words with how each word combines with other words within a corpus, collocation analysis can highlight above chance, two-word combinations. Here, we demonstrate how this approach can also be applied to non-human animal signal sequences by implementing it on artificially generated data sets of call combinations. We argue collocation analysis represents a promising tool for identifying non-random, communicatively relevant call combinations and, more generally, signal sequences, in animals

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies

    Call combinations in chimpanzees: a social tool?

    Full text link
    A growing body of evidence suggests the capacity for animals to combine calls into larger communicative structures is more common than previously assumed. Despite its cross-taxa prevalence, little is known regarding the evolutionary pressures driving such combinatorial abilities. One dominant hypothesis posits that social complexity and vocal complexity are linked, with changes in social structuring (e.g., group size) driving the emergence of ever-more complex vocal abilities, such as call sequencing. In this paper, we tested this hypothesis through investigating combinatoriality in the vocal system of the highly social chimpanzee. Specifically, we predicted combinatoriality to be more common in socially-driven contexts and in females and lower-ranked males (socially challenging contexts and socially challenged individuals respectively). Firstly, through applying methods from computational linguistics (i.e., collocation analyses), we built an objective repertoire of combinatorial structures in this species. Second, we investigated what potential factors influenced call combination production. We show that combinatoriality is predominant in 1) social contexts vs. non-social contexts, 2) females vs. males, and 3) negatively correlates with male rank. Together, these results suggest one function of combinatoriality in chimpanzees may be to help individuals navigate their dynamic social world. More generally, we argue these findings provide support for the hypothesized link between social and vocal complexity and can provide insight into the evolution of our own highly combinatorial communication system, language

    Call combinations in chimpanzees: a social tool?

    Get PDF
    A growing body of evidence suggests the capacity for animals to combine calls into larger communicative structures is more common than previously assumed. Despite its cross-taxa prevalence, little is known regarding the evolutionary pressures driving such combinatorial abilities. One dominant hypothesis posits that social complexity and vocal complexity are linked, with changes in social structuring (e.g., group size) driving the emergence of ever-more complex vocal abilities, such as call sequencing. In this paper, we tested this hypothesis through investigating combinatoriality in the vocal system of the highly social chimpanzee. Specifically, we predicted combinatoriality to be more common in socially-driven contexts and in females and lower-ranked males (socially challenging contexts and socially challenged individuals respectively). Firstly, through applying methods from computational linguistics (i.e., collocation analyses), we built an objective repertoire of combinatorial structures in this species. Second, we investigated what potential factors influenced call combination production. We show that combinatoriality is predominant in 1) social contexts vs. non-social contexts, 2) females vs. males, and 3) negatively correlates with male rank. Together, these results suggest one function of combinatoriality in chimpanzees may be to help individuals navigate their dynamic social world. More generally, we argue these findings provide support for the hypothesized link between social and vocal complexity and can provide insight into the evolution of our own highly combinatorial communication system, language

    Chimpanzees combine pant hoots with food calls into larger structures

    No full text
    A growing body of observational and experimental data in nonhuman primates has highlighted the presence of rudimentary call combinations within the vocal communication system of monkeys. Such evidence suggests the ability to combine meaning-bearing units into larger structures, a key feature of language also known as syntax, could have its origins rooted within the primate lineage. However, the evolutionary progression of this trait remains ambiguous as evidence for similar combinations in great apes, our closest-living relatives, is sparse and incomplete. In this study, we aimed to bridge this gap by analysing the combinatorial properties of the pant hoot–food call combination in our closest-living relative, the chimpanzee, Pan troglodytes. To systematically investigate the syntactic-like potential of this structure, we adopted three levels of analysis. First, we applied collocation analyses, methods traditionally used in language sciences, to confirm the combination of pant hoots with food calls was not a random co-occurrence, but instead a consistently produced structure. Second, using acoustic analyses, we confirmed pant hoots and food calls comprising the combination were acoustically indistinguishable from the same calls produced in isolation, indicating the pant hoot–food call combination is composed of individually occurring meaning-bearing units, a key criterion of linguistic syntax. Finally, we investigated the context-specific nature of this structure, demonstrating that the call combination was more likely to be produced when feeding on larger patches and when a high-ranking individual joined the feeding party. Together our results converge to provide support for the systematic combination of calls in chimpanzees. We highlight that playback experiments are vital to robustly disentangle both the function this combination might serve and the similarities with combinations of meaning-bearing units (i.e. syntax) in language
    corecore