22 research outputs found

    Controlling Microgrids Without External Data: A Benchmark of Stochastic Programming Methods

    Full text link
    Microgrids are local energy systems that integrate energy production, demand, and storage units. They are generally connected to the regional grid to import electricity when local production and storage do not meet the demand. In this context, Energy Management Systems (EMS) are used to ensure the balance between supply and demand, while minimizing the electricity bill, or an environmental criterion. The main implementation challenges for an EMS come from the uncertainties in the consumption, the local renewable energy production, and in the price and the carbon intensity of electricity. Model Predictive Control (MPC) is widely used to implement EMS but is particularly sensitive to the forecast quality, and often requires a subscription to expensive third-party forecast services. We introduce four Multistage Stochastic Control Algorithms relying only on historical data obtained from on-site measurements. We formulate them under the shared framework of Multistage Stochastic Programming and benchmark them against two baselines in 61 different microgrid setups using the EMSx dataset. Our most effective algorithm produces notable cost reductions compared to an MPC that utilizes the same uncertainty model to generate predictions, and it demonstrates similar performance levels to an ideal MPC that relies on perfect forecasts

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Interactions between small cities and their hydrosystems: an analysis of local river stakeholders’ point of view

    No full text
    International audienceHuman societies historically developed taking advantage of hydrosystems’ resources as well as enduring their unpredictability. The structuration of populations into cities relied for many of them upon the diversity of uses hydrosystems would then create. Although today’s interactions between societies and their local hydrosystems seem to weaken and to standardize, there is a need to reconsider the appreciation of river areas in light of contemporary socio-environmental stakes.Joining the research movement on river-societies interactions, a PhD research project is conducted to better understand the status of small hydrosystems within small cities of the Western part of France. It considers the limited yet growing knowledge on ordinary landscapes such as small cities (2000-20000 inhabitants) and smaller rivers (below 7th order Strahler streams) that still compose a great portion of France. Our field study, the French department of the Maine-et-Loire, is largely representative of these characteristics and is well known for being a region with an important cultural heritage around the Loire valley. Through the study of four cities located in diverse environments (from floodplain areas to enclosed valleys) and facing specific challenges (in terms of demographic, economic, environmental changes) we aim to question the place of river areas in the city at different timesteps.This presentation will focus on a series of interviews that have been conducted with local stakeholders whose activities interact with river areas. These interviews take an interest in understanding the values attributed to the hydrosystems, the way they are manage locally as well as the ways stakeholders interact with each other, thus questioning the integration of hydrosystems within the territorial project. First results will emphasize on the importance of property regime, esthetics and new mobilities, as well as representatives’ perceptions in characterizing river-cities relationships

    Morphometric analysis of the distal femur in total knee arthroplasty and native knees

    No full text
    Aims : Analysis of the morphology of the distal femur, and by extension of the femoral components in total knee arthroplasty (TKA), has largely been related to the aspect ratio, which represents the width of the femur. Little is known about variations in trapezoidicity (i.e. whether the femur is more rectangular or more trapezoidal). This study aimed to quantify additional morphological characteristics of the distal femur and identify anatomical features associated with higher risks of over-or under-sizing of components in TKA. Methods : We analysed the shape of 114 arthritic knees at the time of primary TKA using the pre-operative CT scans. The aspect ratio and trapezoidicity ratio were quantified, and the postoperative prosthetic overhang was calculated. We compared the morphological characteristics with those of 12 TKA models. Results : There was significant variation in both the aspect ratio and trapezoidicity ratio between individuals. Femoral trapezoidicity was mostly due to an inward curve of the medial cortex. Overhang was correlated with the aspect ratio (with a greater chance of overhang in narrow femurs), trapezoidicity ratio (with a greater chance in trapezoidal femurs), and the tibio-femoral angle (with a greater chance in valgus knees). Discussion : This study shows that rectangular/trapezoidal variability of the distal femur cannot be ignored. Most of the femoral components which were tested appeared to be excessively rectangular when compared with the bony contours of the distal femur. These findings suggest that the design of TKA should be more concerned with matching the trapezoidal/rectangular shape of the native femur. Take home message: The distal femur is considerably more trapezoidal than most femoral components, and therefore, care must be taken to avoid anterior prosthetic overhang in TK

    Morphometric analysis of the distal femur in total knee arthroplasty and native knees

    No full text
    International audienc

    The scale of virtual environment influences human perception of distance

    No full text
    International audienceParticipants were instructed to reproduce a previously observed distance by travelling passively at a constant velocity into straight textured tunnels in a CAVE. The diameter of the tunnel into which participants travelled and the egocentric distance to be reproduced were manipulated. Participants' distance perception was sensitive to the tunnel's scale, distance being overestimated with the tunnel's diameter increase and underestimated with the tunnel's diameter decrease

    Controlling Microgrids Without External Data: A Benchmark of Stochastic Programming Methods

    No full text
    Microgrids are local energy systems that integrate energy production, demand, and storage units. They are generally connected to the regional grid to import electricity when local production and storage do not meet the demand. In this context, Energy Management Systems (EMS) are used to ensure the balance between supply and demand, while minimizing the electricity bill, or an environmental criterion. The main implementation challenges for an EMS come from the uncertainties in the consumption, the local renewable energy production, and in the price and the carbon intensity of electricity. Model Predictive Control (MPC) is widely used to implement EMS but is particularly sensitive to the forecast quality, and often requires a subscription to expensive third-party forecast services. We introduce four Multistage Stochastic Control Algorithms relying only on historical data obtained from on-site measurements. We formulate them under the shared framework of Multistage Stochastic Programming and benchmark them against two baselines in 61 different microgrid setups using the EMSx dataset. Our most effective algorithm produces notable cost reductions compared to an MPC that utilizes the same uncertainty model to generate predictions, and it demonstrates similar performance levels to an ideal MPC that relies on perfect forecasts

    Controlling Microgrids Without External Data: A Benchmark of Stochastic Programming Methods

    No full text
    Microgrids are local energy systems that integrate energy production, demand, and storage units. They are generally connected to the regional grid to import electricity when local production and storage do not meet the demand. In this context, Energy Management Systems (EMS) are used to ensure the balance between supply and demand, while minimizing the electricity bill, or an environmental criterion. The main implementation challenges for an EMS come from the uncertainties in the consumption, the local renewable energy production, and in the price and the carbon intensity of electricity. Model Predictive Control (MPC) is widely used to implement EMS but is particularly sensitive to the forecast quality, and often requires a subscription to expensive third-party forecast services. We introduce four Multistage Stochastic Control Algorithms relying only on historical data obtained from on-site measurements. We formulate them under the shared framework of Multistage Stochastic Programming and benchmark them against two baselines in 61 different microgrid setups using the EMSx dataset. Our most effective algorithm produces notable cost reductions compared to an MPC that utilizes the same uncertainty model to generate predictions, and it demonstrates similar performance levels to an ideal MPC that relies on perfect forecasts
    corecore