84 research outputs found

    Defining a recovery-oriented cascade of care for opioid use disorder: A community-driven, statewide cross-sectional assessment

    Get PDF
    Background In light of the accelerating and rapidly evolving overdose crisis in the United States (US), new strategies are needed to address the epidemic and to efficiently engage and retain individuals in care for opioid use disorder (OUD). Moreover, there is an increasing need for novel approaches to using health data to identify gaps in the cascade of care for persons with OUD. Methods and findings Between June 2018 and May 2019, we engaged a diverse stakeholder group (including directors of statewide health and social service agencies) to develop a statewide, patient-centered cascade of care for OUD for Rhode Island, a small state in New England, a region highly impacted by the opioid crisis. Through an iterative process, we modified the cascade of care defined by Williams et al. for use in Rhode Island using key national survey data and statewide health claims datasets to create a cross-sectional summary of 5 stages in the cascade. Approximately 47,000 Rhode Islanders (5.2%) were estimated to be at risk for OUD (stage 0) in 2016. At the same time, 26,000 Rhode Islanders had a medical claim related to an OUD diagnosis, accounting for 55% of the population at risk (stage 1); 27% of the stage 0 population, 12,700 people, showed evidence of initiation of medication for OUD (MOUD, stage 2), and 18%, or 8,300 people, had evidence of retention on MOUD (stage 3). Imputation from a national survey estimated that 4,200 Rhode Islanders were in recovery from OUD as of 2016, representing 9% of the total population at risk. Limitations included use of self-report data to arrive at estimates of the number of individuals at risk for OUD and using a national estimate to identify the number of individuals in recovery due to a lack of available state data sources. Conclusions Our findings indicate that cross-sectional summaries of the cascade of care for OUD can be used as a health policy tool to identify gaps in care, inform data-driven policy decisions, set benchmarks for quality, and improve health outcomes for persons with OUD. There exists a significant opportunity to increase engagement prior to the initiation of OUD treatment (i.e., identification of OUD symptoms via routine screening or acute presentation) and improve retention and remission from OUD symptoms through improved community-supported processes of recovery. To do this more precisely, states should work to systematically collect data to populate their own cascade of care as a health policy tool to enhance system-level interventions and maximize engagement in care

    Optimized modeling of Gaia-Hipparcos astrometry for the detection of the smallest cold Jupiter and confirmation of seven low mass companions

    Get PDF
    © 2021 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1093/mnras/stab2225To fully constrain the orbits of low mass circumstellar companions, we conduct combined analyses of the radial velocity data as well as the Gaia and Hipparcos astrometric data for eight nearby systems. Our study shows that companion-induced position and proper motion differences between Gaia and Hipparcos are significant enough to constrain orbits of low mass companions to a precision comparable with previous combined analyses of direct imaging and radial velocity data. We find that our method is robust to whether we use Gaia DR2 or Gaia EDR3, as well as whether we use all of the data, or just proper motion differences. In particular, we fully characterize the orbits of HD 190360 b and HD 16160 C for the first time. With a mass of 1.8±\pm0.2mJupm_{\rm Jup} and an effective temperature of 123-176 K and orbiting around a Sun-like star, HD 190360 b is the smallest Jupiter-like planet with well-constrained mass and orbit, belonging to a small sample of fully characterized Jupiter analogs. It is separated from its primary star by 0.25â€Čâ€Č'' and thus may be suitable for direct imaging by the CGI instrument of the Roman Space Telescope.Peer reviewe

    The Demographics and Atmospheres of Giant Planets with the ELTs

    Get PDF
    Gas giants are the most readily detectable exoplanets but fundamental questions about their system architectures, formation, migration, and atmospheres have been unanswerable with the current generation of ground- and space-based facilities. The dominant techniques to detect and characterize giant planets −- radial velocities, transits, direct imaging, microlensing, and astrometry −- are each isolated to a limited range of planet masses, separations, ages, and temperatures. These windows into the arrangement and physical properties of giant planets have spawned new questions about the timescale and location of their assembly; the distributions of planet mass and orbital separation at young and old ages; the composition and structure of their atmospheres; and their orbital and rotational angular momentum architectures. The ELTs will address these questions by building bridges between these islands of mass, orbital distance, and age. The angular resolution, collecting area, all-sky coverage, and novel instrumentation suite of these facilities are needed to provide a complete map of the orbits and atmospheric evolution of gas giant planets (0.3−-10 MJupM_\mathrm{Jup}) across space (0.1−-100 AU) and time (1 Myr to 10 Gyr). This white paper highlights the scientific potential of the GMT and TMT to address these outstanding questions, with a particular focus on the role of direct imaging and spectroscopy of large samples of giant planets that will soon be made available with GaiaGaia.Comment: White paper for the Astro2020 decadal surve

    Balancing Selection on a Regulatory Region Exhibiting Ancient Variation That Predates Human–Neandertal Divergence

    Get PDF
    Ancient population structure shaping contemporary genetic variation has been recently appreciated and has important implications regarding our understanding of the structure of modern human genomes. We identified a ∌36-kb DNA segment in the human genome that displays an ancient substructure. The variation at this locus exists primarily as two highly divergent haplogroups. One of these haplogroups (the NE1 haplogroup) aligns with the Neandertal haplotype and contains a 4.6-kb deletion polymorphism in perfect linkage disequilibrium with 12 single nucleotide polymorphisms (SNPs) across diverse populations. The other haplogroup, which does not contain the 4.6-kb deletion, aligns with the chimpanzee haplotype and is likely ancestral. Africans have higher overall pairwise differences with the Neandertal haplotype than Eurasians do for this NE1 locus (p<10−15). Moreover, the nucleotide diversity at this locus is higher in Eurasians than in Africans. These results mimic signatures of recent Neandertal admixture contributing to this locus. However, an in-depth assessment of the variation in this region across multiple populations reveals that African NE1 haplotypes, albeit rare, harbor more sequence variation than NE1 haplotypes found in Europeans, indicating an ancient African origin of this haplogroup and refuting recent Neandertal admixture. Population genetic analyses of the SNPs within each of these haplogroups, along with genome-wide comparisons revealed significant FST (p = 0.00003) and positive Tajima's D (p = 0.00285) statistics, pointing to non-neutral evolution of this locus. The NE1 locus harbors no protein-coding genes, but contains transcribed sequences as well as sequences with putative regulatory function based on bioinformatic predictions and in vitro experiments. We postulate that the variation observed at this locus predates Human–Neandertal divergence and is evolving under balancing selection, especially among European populations

    Analysis of apparent optical properties and ocean color models using measurements of seawater constituents in New England continental shelf surface waters

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C03026, doi:10.1029/2003JC001977.We used budgets of absorption (a), scattering (b), and backscattering (bb) for particles and chromophoric dissolved organic matter (CDOM) to investigate sources of seasonal variations in apparent optical properties (AOPs) of New England continental shelf surface waters. Spectral a, b, and bb budgets for particles were estimated from flow cytometric measurements of eukaryotic pico/nanophytoplankton, Synechococcus, heterotrophic prokaryotes, detritus, and minerals; AOPs were modeled with Hydrolight radiative transfer software. For late summer and spring, our modeled values of the diffuse attenuation coefficient (Kd) and remote sensing reflectance (Rrs) were on average within 15% and 9%, respectively, of independent measurements. This close agreement allowed us to examine how different seawater constituents contributed to AOP variability. Higher values of Kd in the spring, compared to summer, were due to higher absorption by eukaryotic phytoplankton (aeuk) and CDOM (aCDOM), which coincided with higher nutrient levels and less stratified conditions than in the summer. Differences in the spectral shape of Rrs between the seasons were caused by a combination of differences in aeuk, aCDOM, and bb from non-phytoplankton particles (minerals and detritus combined). For non-phytoplankton bb the major seasonal difference was a higher inverse wavelength dependence in the summer due to the effects of small organic detritus. We applied two semianalytical ocean color models to our data, in order to evaluate whether the assumptions and parameterizations inherent in these models are applicable for New England shelf waters. We show how differences between observed and modeled chlorophyll a specific phytoplankton absorption, aCDOM, and non-phytoplankton bb cause errors in chlorophyll a concentration and IOPs retrieved from reflectance inversion models.Financial support was provided by ONR grants N00014-95-1-0333 and N00014-96-1-0965 (H. Sosik and R. Olson), NASA grants NAGW- 517, NAG5-7538, and NAG5-8868, and a NASA Earth System Science Fellowship (R. Green)

    The Tara Pacific expedition—A pan-ecosystemic approach of the “-omics” complexity of coral reef holobionts across the Pacific Ocean

    Get PDF
    Coral reefs are the most diverse habitats in the marine realm. Their productivity, structural complexity, and biodiversity critically depend on ecosystem services provided by corals that are threatened because of climate change effects—in particular, ocean warming and acidification. The coral holobiont is composed of the coral animal host, endosymbiotic dinoflagellates, associated viruses, bacteria, and other microeukaryotes. In particular, the mandatory photosymbiosis with microalgae of the family Symbiodiniaceae and its consequences on the evolution, physiology, and stress resilience of the coral holobiont have yet to be fully elucidated. The functioning of the holobiont as a whole is largely unknown, although bacteria and viruses are presumed to play roles in metabolic interactions, immunity, and stress tolerance. In the context of climate change and anthropogenic threats on coral reef ecosystems, the Tara Pacific project aims to provide a baseline of the “-omics” complexity of the coral holobiont and its ecosystem across the Pacific Ocean and for various oceanographically distinct defined areas. Inspired by the previous Tara Oceans expeditions, the Tara Pacific expedition (2016–2018) has applied a pan-ecosystemic approach on coral reefs throughout the Pacific Ocean, drawing an east–west transect from Panama to Papua New Guinea and a south–north transect from Australia to Japan, sampling corals throughout 32 island systems with local replicates. Tara Pacific has developed and applied state-of-the-art technologies in very-high-throughput genetic sequencing and molecular analysis to reveal the entire microbial and chemical diversity as well as functional traits associated with coral holobionts, together with various measures on environmental forcing. This ambitious project aims at revealing a massive amount of novel biodiversity, shedding light on the complex links between genomes, transcriptomes, metabolomes, organisms, and ecosystem functions in coral reefs and providing a reference of the biological state of modern coral reefs in the Anthropocene

    Catching Element Formation In The Act

    Full text link
    Gamma-ray astronomy explores the most energetic photons in nature to address some of the most pressing puzzles in contemporary astrophysics. It encompasses a wide range of objects and phenomena: stars, supernovae, novae, neutron stars, stellar-mass black holes, nucleosynthesis, the interstellar medium, cosmic rays and relativistic-particle acceleration, and the evolution of galaxies. MeV gamma-rays provide a unique probe of nuclear processes in astronomy, directly measuring radioactive decay, nuclear de-excitation, and positron annihilation. The substantial information carried by gamma-ray photons allows us to see deeper into these objects, the bulk of the power is often emitted at gamma-ray energies, and radioactivity provides a natural physical clock that adds unique information. New science will be driven by time-domain population studies at gamma-ray energies. This science is enabled by next-generation gamma-ray instruments with one to two orders of magnitude better sensitivity, larger sky coverage, and faster cadence than all previous gamma-ray instruments. This transformative capability permits: (a) the accurate identification of the gamma-ray emitting objects and correlations with observations taken at other wavelengths and with other messengers; (b) construction of new gamma-ray maps of the Milky Way and other nearby galaxies where extended regions are distinguished from point sources; and (c) considerable serendipitous science of scarce events -- nearby neutron star mergers, for example. Advances in technology push the performance of new gamma-ray instruments to address a wide set of astrophysical questions.Comment: 14 pages including 3 figure
    • 

    corecore