CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
unknown
Analysis of apparent optical properties and ocean color models using measurements of seawater constituents in New England continental shelf surface waters
Authors
Aas
Ahn
+62 more
Balch
Boss
Bricaud
Brown
Chang
Clark
DeGrandpre
Fournier
Fournier
Garver
Gordon
Gordon
Green
Green
Gregg
Harrison
Heidi M. Sosik
Kishino
Koike
Lee
Loisel
Macdonald
Maffione
Maritorena
Mobley
Mobley
Morel
Morel
Morel
Morel
Morel
Nagata
Nelson
O'Reilly
Pegau
Pope
Prieur
Rebecca E. Green
Reynolds
Roesler
Roesler
Sathyendranath
Sathyendranath
Sathyendranath
Shibata
Sieracki
Smith
Smith
Sosik
Stramska
Stramski
Stramski
Stramski
Stramski
Terrill
Twardowski
Ulloa
Vaillancourt
Vodacek
Yamasaki
Zaneveld
Zhang
Publication date
17 March 2004
Publisher
'American Geophysical Union (AGU)'
Doi
Abstract
Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): C03026, doi:10.1029/2003JC001977.We used budgets of absorption (a), scattering (b), and backscattering (bb) for particles and chromophoric dissolved organic matter (CDOM) to investigate sources of seasonal variations in apparent optical properties (AOPs) of New England continental shelf surface waters. Spectral a, b, and bb budgets for particles were estimated from flow cytometric measurements of eukaryotic pico/nanophytoplankton, Synechococcus, heterotrophic prokaryotes, detritus, and minerals; AOPs were modeled with Hydrolight radiative transfer software. For late summer and spring, our modeled values of the diffuse attenuation coefficient (Kd) and remote sensing reflectance (Rrs) were on average within 15% and 9%, respectively, of independent measurements. This close agreement allowed us to examine how different seawater constituents contributed to AOP variability. Higher values of Kd in the spring, compared to summer, were due to higher absorption by eukaryotic phytoplankton (aeuk) and CDOM (aCDOM), which coincided with higher nutrient levels and less stratified conditions than in the summer. Differences in the spectral shape of Rrs between the seasons were caused by a combination of differences in aeuk, aCDOM, and bb from non-phytoplankton particles (minerals and detritus combined). For non-phytoplankton bb the major seasonal difference was a higher inverse wavelength dependence in the summer due to the effects of small organic detritus. We applied two semianalytical ocean color models to our data, in order to evaluate whether the assumptions and parameterizations inherent in these models are applicable for New England shelf waters. We show how differences between observed and modeled chlorophyll a specific phytoplankton absorption, aCDOM, and non-phytoplankton bb cause errors in chlorophyll a concentration and IOPs retrieved from reflectance inversion models.Financial support was provided by ONR grants N00014-95-1-0333 and N00014-96-1-0965 (H. Sosik and R. Olson), NASA grants NAGW- 517, NAG5-7538, and NAG5-8868, and a NASA Earth System Science Fellowship (R. Green)
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 01/04/2019
Woods Hole Open Access Server
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:darchive.mblwhoilibrary.or...
Last time updated on 08/06/2012