5,112 research outputs found

    Combining Hebbian and reinforcement learning in a minibrain model

    Full text link
    A toy model of a neural network in which both Hebbian learning and reinforcement learning occur is studied. The problem of `path interference', which makes that the neural net quickly forgets previously learned input-output relations is tackled by adding a Hebbian term (proportional to the learning rate η\eta) to the reinforcement term (proportional to ρ\rho) in the learning rule. It is shown that the number of learning steps is reduced considerably if 1/4<η/ρ<1/21/4 < \eta/\rho < 1/2, i.e., if the Hebbian term is neither too small nor too large compared to the reinforcement term

    A Heterosynaptic Learning Rule for Neural Networks

    Full text link
    In this article we intoduce a novel stochastic Hebb-like learning rule for neural networks that is neurobiologically motivated. This learning rule combines features of unsupervised (Hebbian) and supervised (reinforcement) learning and is stochastic with respect to the selection of the time points when a synapse is modified. Moreover, the learning rule does not only affect the synapse between pre- and postsynaptic neuron, which is called homosynaptic plasticity, but effects also further remote synapses of the pre- and postsynaptic neuron. This more complex form of synaptic plasticity has recently come under investigations in neurobiology and is called heterosynaptic plasticity. We demonstrate that this learning rule is useful in training neural networks by learning parity functions including the exclusive-or (XOR) mapping in a multilayer feed-forward network. We find, that our stochastic learning rule works well, even in the presence of noise. Importantly, the mean learning time increases with the number of patterns to be learned polynomially, indicating efficient learning.Comment: 19 page

    Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure.

    Get PDF
    Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane-cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane-cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions

    The development of a glucose prediction model in critically ill patients

    Get PDF
    Purpose: The aim of the current study is to develop a prediction model for glucose levels applicable for all patients admitted to the ICU with an expected ICU stay of at least 24 h. This model will be incorporated in a closed-loop glucose system to continuously and automatically control glucose values. Methods: Data from a previous single-center randomized controlled study was used. All patients received a FreeStyle Navigator II subcutaneous CGM system from Abbott during their ICU stay. The total dataset was randomly divided into a training set and a validation set. A glucose prediction model was developed based on historical glucose data. Accuracy of the prediction model was determined using the Mean Squared Difference (MSD), the Mean Absolute Difference (MAD) and a Clarke Error Grid (CEG). Results: The dataset included 94 ICU patients with a total of 134,673 glucose measurements points that were used for modelling. MSD was 0.410 +/- 0.495 for the model, the MAD was 5.19 +/- 2.63 and in the CEG 99.8% of the data points were in the clinically acceptable regions. Conclusion: In this study a glucose prediction model for ICU patients is developed. This study shows that it is possible to accurately predict a patient's glucose 30 min ahead based on historical glucose data. This is the first step in the development of a closed-loop glucose system. (C) 2021 Elsevier B.V. All rights reserved

    Sound localization with bilateral bone conduction devices

    Get PDF
    Purpose To investigate sound localization in patients bilaterally fitted with bone conduction devices (BCDs). Additionally, clinically applicable methods to improve localization accuracy were explored. Methods Fifteen adults with bilaterally fitted percutaneous BCDs were included. At baseline, sound localization, (un)aided pure-tone thresholds, device use, speech, spatial and qualities of hearing scale (SSQ) and York hearing-related quality of life (YHRQL) questionnaire were measured. Settings to optimize sound localizing were added to the BCDs. At 1 month, sound localization was assessed again and localization was practiced with a series of sounds with visual feedback. At 3 months, localization performance, device use and questionnaire scores were determined again. Results At baseline, one patient with congenital hearing loss demonstrated near excellent localization performance and four other patients (three with congenital hearing loss) localized sounds (quite) accurately. Seven patients with acquired hearing loss were able to lateralize sounds, i.e. identify whether sounds were coming from the left or right side, but could not localize sounds accurately. Three patients (one with congenital hearing loss) could not even lateralize sounds correctly. SSQ scores were significantly higher at 3 months. Localization performance, device use and YHRQL scores were not significantly different between visits. Conclusion In this study, the majority of experienced bilateral BCD users could lateralize sounds and one third was able to localize sounds (quite) accurately. The localization performance was robust and stable over time. Although SSQ scores were increased at the last visit, optimizing device settings and a short practice session did not improve sound localization

    The effect of injectable biocompatible elastomer (PDMS) on the strength of the proximal fixation of endovascular aneurysm repair grafts: An in vitro study

    Get PDF
    PurposeOne of the major concerns in the long-term success of endovascular aneurysm repair (EVAR) is stent graft migration, which can cause type I endoleak and even aneurysm rupture. Fixation depends on the mechanical forces between the graft and both the aortic neck and the blood flow. Therefore, there are anatomical restrictions for EVAR, such as short and angulated necks. To improve the fixation of EVAR grafts, elastomer (PDMS) can be injected in the aneurysm sac. The support given by the elastomer might prevent dislocation and migration of the graft. The aim of this study was to measure the influence of an injectable biocompatible elastomer on the fixation strength of different EVAR grafts in an in vitro model.MethodsThe proximal part of three different stent grafts was inserted in a bovine artery with an attached latex aneurysm. The graft was connected to a tensile testing machine, applying force to the proximal fixation, while the artery with the aneurysm was fixated to the setup. The force to obtain graft dislodgement (DF) from the aorta was recorded in Newtons (N). Three different proximal seal lengths (5, 10, and 15 mm) were evaluated. The experiments were repeated after the space between the graft and the latex aneurysm was filled with the elastomer. Independent sample ttests were used for the comparison between the DF before and after elastomer treatment for each seal length.ResultsThe mean DF (mean ± SD) of all grafts without elastomer sac filling for a proximal seal length of 5, 10, and 15 mm were respectively, 4.4 ± 3.1 N, 12.2 ± 10.6 N, and 15.1 ± 6.9 N. After elastomer sac filling, the dislodgement forces increased significantly (P < .001) to 20.9 ± 3.8 N, 31.8 ± 9.8 N, and 36.0 ± 14.1 N, respectively.ConclusionsThe present study shows that aneurysm sac filling may have a role as an adjuvant procedure to the present EVAR technique. The strength of the proximal fixation of three different stent grafts increases significantly in this in vitro setting. Further in vivo research must be done to see if this could facilitate the treatment of aneurysms with short infrarenal necks.Clinical RelevanceStent graft migration and endoleak due to suboptimal fixation are major drawbacks of currently available stent grafts. Optimizing the proximal fixation by peri-graft elastomer aneurysm sac filling may lead to lower incidence of graft migration and endoleak. It might make endovascular aneurysm repair available to larger group of patients with an abdominal aortic aneurysm

    A review on probabilistic graphical models in evolutionary computation

    Get PDF
    Thanks to their inherent properties, probabilistic graphical models are one of the prime candidates for machine learning and decision making tasks especially in uncertain domains. Their capabilities, like representation, inference and learning, if used effectively, can greatly help to build intelligent systems that are able to act accordingly in different problem domains. Evolutionary algorithms is one such discipline that has employed probabilistic graphical models to improve the search for optimal solutions in complex problems. This paper shows how probabilistic graphical models have been used in evolutionary algorithms to improve their performance in solving complex problems. Specifically, we give a survey of probabilistic model building-based evolutionary algorithms, called estimation of distribution algorithms, and compare different methods for probabilistic modeling in these algorithms

    Associative and Spatial Relationships in Thesaurus-based Retrieval

    Get PDF
    The OASIS (Ontologically Augmented Spatial Information System) project explores terminology systems for thematic and spatial access in digital library applications. A prototype implementation uses data from the Royal Commission on the Ancient and Historical Monuments of Scotland, together with the Getty AAT and TGN thesauri. This paper describes its integrated spatial and thematic schema and discusses novel approaches to the application of thesauri in spatial and thematic semantic distance measures. Semantic distance measures can underpin interactive and automatic query expansion techniques by ranking lists of candidate terms. We first illustrate how hierarchical spatial relationships can be used to provide more flexible retrieval for queries incorporating place names in applications employing online gazetteers and geographical thesauri. We then employ a set of experimental scenarios to investigate key issues affecting use of the associative (RT) thesaurus relationships in semantic distance measures. Previous work has noted the potential of RTs in thesaurus search aids but the problem of increased noise in result sets has been emphasised. Specialising RTs allows the possibility of dynamically linking RT type to query context. Results presented in this paper demonstrate the potential for filtering on the context of the RT link and on subtypes of RT relationships

    Spectroscopic investigations of detachment on the MAST Upgrade Super-X divertor

    Get PDF
    We present the first analysis of the atomic and molecular processes at play during detachment in the MAST-U Super-X divertor using divertor spectroscopy data. Our analysis indicates detachment in the MAST-U Super-X divertor can be separated into four sequential phases: First, the ionisation region detaches from the target at detachment onset leaving a region of increased molecular densities downstream. The plasma interacts with these molecules, resulting in molecular ions (D2+D_2^+ and/or D2−→D+D−D_2^- \rightarrow D + D^-) that further react with the plasma leading to Molecular Activated Recombination and Dissociation (MAR and MAD), which results in excited atoms and significant Balmer line emission. Second, the MAR region detaches from the target leaving a sub-eV temperature region downstream. Third, an onset of strong emission from electron-ion recombination (EIR) ensues. Finally, the electron density decays near the target, resulting in a density front moving upstream. The analysis in this paper indicates that plasma-molecule interactions have a larger impact than previously reported and play a critical role in the intensity and interpretation of hydrogen atomic line emission characteristics on MAST-U. Furthermore, we find that the Fulcher band emission profile in the divertor can be used as a proxy for the ionisation region and may also be employed as a plasma temperature diagnostic for improving the separation of hydrogenic emission arising from electron-impact excitation and that from plasma-molecular interactions. We provide evidences for the presence of low electron temperatures (<0.5<0.5 eV) during detachment phases III-IV based on quantitative spectroscopy analysis, a Boltzmann relation of the high-n Balmer line transitions together with an analysis of the brightness of high-n Balmer lines
    • 

    corecore