45 research outputs found

    Different atmospheric moisture divergence responses to extreme and moderate El Niños

    Get PDF
    On seasonal and inter-annual time scales, vertically integrated moisture divergence provides a useful measure of the tropical atmospheric hydrological cycle. It reflects the combined dynamical and thermodynamical effects, and is not subject to the limitations that afflict observations of evaporation minus precipitation. An empirical orthogonal function (EOF) analysis of the tropical Pacific moisture divergence fields calculated from the ERA-Interim reanalysis reveals the dominant effects of the El Niño-Southern Oscillation (ENSO) on inter-annual time scales. Two EOFs are necessary to capture the ENSO signature, and regression relationships between their Principal Components and indices of equatorial Pacific sea surface temperature (SST) demonstrate that the transition from strong La Niña through to extreme El Niño events is not a linear one. The largest deviation from linearity is for the strongest El Niños, and we interpret that this arises at least partly because the EOF analysis cannot easily separate different patterns of responses that are not orthogonal to each other. To overcome the orthogonality constraints, a self-organizing map (SOM) analysis of the same moisture divergence fields was performed. The SOM analysis captures the range of responses to ENSO, including the distinction between the moderate and strong El Niños identified by the EOF analysis. The work demonstrates the potential for the application of SOM to large scale climatic analysis, by virtue of its easier interpretation, relaxation of orthogonality constraints and its versatility for serving as an alternative classification method. Both the EOF and SOM analyses suggest a classification of “moderate” and “extreme” El Niños by their differences in the magnitudes of the hydrological cycle responses, spatial patterns and evolutionary paths. Classification from the moisture divergence point of view shows consistency with results based on other physical variables such as SST

    Regional climate modeling for Asia

    Get PDF
    The regional climate model (RCM) with higher resolution and sophisticated physical processes can reproduce and project fine-scale climate information, which cannot be captured by the global climate model (GCM). Therefore, we developed the Seoul National University Regional Climate Model (SNURCM) in the 1990s to simulate the intrinsic and detailed climate prevailing in Asia. In this study, we reviewed the developmental processes of the SNURCM and its application researches. In the simulation of regional climate over Asia, systematic errors can be generated because of natural characteristics such as complex land-surface conditions and topography, warm ocean conditions, and strong seasonal monsoon circulation and convection. Numerous methods and techniques have been applied to reduce these errors and improve the SNURCM. For long-term simulations without climate drift, the spectral nudging technique as well as the traditional relaxation method was employed for the boundary conditions. To represent reasonable interactions between earth systems, a simple ocean model and an advanced land-surface model were implemented into the SNURCM. Physical schemes for precipitation and vertical diffusion developed for short-term numerical weather prediction models were optimized or improved for long-term simulation. The SNURCM has been applied to future climate projection, reproduction of extreme climate, and seasonal forecasting. Furthermore, the model has served as a part of the multi-model comparison program and an ensemble of international research programs

    A Pilot Plant for Energy Harvesting from Falling Water in Drainpipes. Technical and Economic Analysis

    No full text
    Renewable energy sources are currently object of great attention from the scientific community involved on the matter, in the general context of the ongoing climate change and related implications. In this work, we investigate the costs needed to implement a technical solution to harvest energy from drainpipes. To this aim, a pilot plant was built at the Laboratory of Environmental and Maritime Hydraulics (LIDAM), University of Salerno, Italy. The driving idea consists in the possibility of collecting rainwater at the roof of a building, storing it in tanks. In this way, the established hydraulic head can be converted into kinetic energy at the bottom of the building as can be easily explained by applying the Bernoulli’s principle. Here, a water jet of mean velocity of up to tens of m/s is formed at the pipe outlet as it is provided with a nozzle. The stream is directed against a Pelton turbine where the rotational kinetic energy is finally converted into electrical energy by means of a DC brushed motor turned as generator. The analysis of the investment and management costs of the pilot plant provides useful economic parameters for implementing the project in practice
    corecore