12 research outputs found
Early environmental quality and life-course mental health effects: The Equal-Life project.
Background: There is increasing evidence that a complex interplay of factors within environments in which children grows up, contributes to children's suboptimal mental health and cognitive development. The concept of the life-course exposome helps to study the impact of the physical and social environment, including social inequities, on cognitive development and mental health over time. Methods: Equal-Life develops and tests combined exposures and their effects on children's mental health and cognitive development. Data from eight birth-cohorts and three school studies (N = 240.000) linked to exposure data, will provide insights and policy guidance into aspects of physical and social exposures hitherto untapped, at different scale levels and timeframes, while accounting for social inequities. Reasoning from the outcome point of view, relevant stakeholders participate in the formulation and validation of research questions, and in the formulation of environmental hazards. Exposure assessment combines GIS-based environmental indicators with omics approaches and new data sources, forming the early-life exposome. Statistical tools integrate data at different spatial and temporal granularity and combine exploratory machine learning models with hypothesis-driven causal modeling. Conclusions: Equal-Life contributes to the development and utilization of the exposome concept by (1) integrating the internal, physical and social exposomes, (2) studying a distinct set of life-course effects on a child's development and mental health (3) characterizing the child's environment at different developmental stages and in different activity spaces, (4) looking at supportive environments for child development, rather than merely pollutants, and (5) combining physical, social indicators with novel effect markers and using new data sources describing child activity patterns and environments
Ubiquitin ligase STUB1 destabilizes IFNγ-receptor complex to suppress tumor IFNγ signaling
The cytokine IFNγ differentially impacts on tumors upon immune checkpoint blockade (ICB). Despite our understanding of downstream signaling events, less is known about regulation of its receptor (IFNγ-R1). With an unbiased genome-wide CRISPR/Cas9 screen for critical regulators of IFNγ-R1 cell surface abundance, we identify STUB1 as an E3 ubiquitin ligase for IFNγ-R1 in complex with its signal-relaying kinase JAK1. STUB1 mediates ubiquitination-dependent proteasomal degradation of IFNγ-R1/JAK1 complex through IFNγ-R1K285 and JAK1K249. Conversely, STUB1 inactivation amplifies IFNγ signaling, sensitizing tumor cells to cytotoxic T cells in vitro. This is corroborated by an anticorrelation between STUB1 expression and IFNγ response in ICB-treated patients. Consistent with the context-dependent effects of IFNγ in vivo, anti-PD-1 response is increased in heterogenous tumors comprising both wildtype and STUB1-deficient cells, but not full STUB1 knockout tumors. These results uncover STUB1 as a critical regulator of IFNγ-R1, and highlight the context-dependency of STUB1-regulated IFNγ signaling for ICB outcome
Multimodal stimulation screens reveal unique and shared genes limiting T cell fitness
Genes limiting T cell antitumor activity may serve as therapeutic targets. It has not been systematically studied whether there are regulators that uniquely or broadly contribute to T cell fitness. We perform genome-scale CRISPR-Cas9 knockout screens in primary CD8 T cells to uncover genes negatively impacting fitness upon three modes of stimulation: (1) intense, triggering activation-induced cell death (AICD); (2) acute, triggering expansion; (3) chronic, causing dysfunction. Besides established regulators, we uncover genes controlling T cell fitness either specifically or commonly upon differential stimulation. Dap5 ablation, ranking highly in all three screens, increases translation while enhancing tumor killing. Loss of Icam1-mediated homotypic T cell clustering amplifies cell expansion and effector functions after both acute and intense stimulation. Lastly, Ctbp1 inactivation induces functional T cell persistence exclusively upon chronic stimulation. Our results functionally annotate fitness regulators based on their unique or shared contribution to traits limiting T cell antitumor activity
Recommended from our members
BMN 673, a Novel and Highly Potent PARP1/2 Inhibitor for the Treatment of Human Cancers with DNA Repair Deficiency
PurposePARP1/2 inhibitors are a class of anticancer agents that target tumor-specific defects in DNA repair. Here, we describe BMN 673, a novel, highly potent PARP1/2 inhibitor with favorable metabolic stability, oral bioavailability, and pharmacokinetic properties.Experimental designPotency and selectivity of BMN 673 was determined by biochemical assays. Anticancer activity either as a single-agent or in combination with other antitumor agents was evaluated both in vitro and in xenograft cancer models.ResultsBMN 673 is a potent PARP1/2 inhibitor (PARP1 IC50 = 0.57 nmol/L), but it does not inhibit other enzymes that we have tested. BMN 673 exhibits selective antitumor cytotoxicity and elicits DNA repair biomarkers at much lower concentrations than earlier generation PARP1/2 inhibitors (such as olaparib, rucaparib, and veliparib). In vitro, BMN 673 selectively targeted tumor cells with BRCA1, BRCA2, or PTEN gene defects with 20- to more than 200-fold greater potency than existing PARP1/2 inhibitors. BMN 673 is readily orally bioavailable, with more than 40% absolute oral bioavailability in rats when dosed in carboxylmethyl cellulose. Oral administration of BMN 673 elicited remarkable antitumor activity in vivo; xenografted tumors that carry defects in DNA repair due to BRCA mutations or PTEN deficiency were profoundly sensitive to oral BMN 673 treatment at well-tolerated doses in mice. Synergistic or additive antitumor effects were also found when BMN 673 was combined with temozolomide, SN38, or platinum drugs.ConclusionBMN 673 is currently in early-phase clinical development and represents a promising PARP1/2 inhibitor with potentially advantageous features in its drug class
BMN 673, a Novel and Highly Potent PARP1/2 Inhibitor for the Treatment of Human Cancers with DNA Repair Deficiency
Purpose: PARP1/2 inhibitors are a class of anticancer agents that target tumor-specific defects in DNA repair. Here, we describe BMN 673, a novel, highly potent PARP1/2 inhibitor with favorable metabolic stability, oral bioavailability, and pharmacokinetic properties. Experimental Design: Potency and selectivity of BMN 673 was determined by biochemical assays. Anticancer activity either as a single-agent or in combination with other antitumor agents was evaluated both in vitro and in xenograft cancer models. Results: BMN 673 is a potent PARP1/2 inhibitor (PARP1 IC50 = 0.57 nmol/L), but it does not inhibit other enzymes that we have tested. BMN673 exhibits selective antitumor cytotoxicity and elicits DNA repair biomarkers at much lower concentrations than earlier generation PARP1/2 inhibitors (such as olaparib, rucaparib, and veliparib). In vitro, BMN 673 selectively targeted tumor cells with BRCA1, BRCA2, or PTEN gene defects with 20- to more than 200-fold greater potency than existing PARP1/2 inhibitors. BMN 673 is readily orally bioavailable, with more than 40% absolute oral bioavailability in rats when dosed in carboxylmethyl cellulose. Oral administration of BMN 673 elicited remarkable antitumor activity in vivo; xenografted tumors that carry defects in DNA repair due to BRCA mutations or PTEN deficiency were profoundly sensitive to oral BMN 673 treatment at well-tolerated doses in mice. Synergistic or additive antitumor effects were also found when BMN 673 was combined with temozolomide, SN38, or platinum drugs. Conclusion: BMN 673 is currently in early-phase clinical development and represents a promising PARP1/2 inhibitor with potentially advantageous features in its drug class. (C) 2013 AACR
Cancer drug addiction is relayed by an ERK2-dependent phenotype switch
Observations from cultured cells 1-3, animal models4 and patients5-7raise the possibility that the dependency of tumours on the therapeutic drugs to which they have acquired resistance represents a vulnerability with potential applications in cancer treatment. However, for this drug addiction trait to become of clinical interest, we must first define the mechanism that underlies it. We performed an unbiased CRISPR-Cas9 knockout screen on melanoma cells that were both resistant and addicted to inhibition of the serine/ threonine-protein kinase BRAF, in order to functionally mine their genome for 'addiction genes'. Here we describe a signalling pathway comprising ERK2 kinase and JUNB and FRA1 transcription factors, disruption of which allowed addicted tumour cells to survive on treatment discontinuation. This occurred in both cultured cells and mice and was irrespective of the acquired drug resistance mechanism. In melanoma and lung cancer cells, death induced by drug withdrawal was preceded by a specific ERK2-dependent phenotype switch, alongside transcriptional reprogramming reminiscent of the epithelial-mesenchymal transition. In melanoma cells, this reprogramming caused the shutdown of microphthalmia-associated transcription factor (MITF), a lineage survival oncoprotein; restoring this protein reversed phenotype switching and prevented the lethality associated with drug addiction. In patients with melanoma that had progressed during treatment with a BRAF inhibitor, treatment cessation was followed by increased expression of the receptor tyrosine kinase AXL, which is associated with the phenotype switch. Drug discontinuation synergized with the melanoma chemotherapeutic agent dacarbazine by further suppressing MITF and its prosurvival target, B-cell lymphoma 2 (BCL-2), and by inducing DNA damage in cancer cells. Our results uncover a pathway that underpins drug addiction in cancer cells, which may help to guide the use of alternating therapeutic strategies for enhanced clinical responses in drug-resistant cancers
Reversal of pre-existing NGFR-driven tumor and immune therapy resistance
Melanomas can switch to a dedifferentiated cell state upon exposure to cytotoxic T cells. However, it is unclear whether such tumor cells pre-exist in patients and whether they can be resensitized to immunotherapy. Here, we chronically expose (patient-derived) melanoma cell lines to differentiation antigen-specific cytotoxic T cells and observe strong enrichment of a pre-existing NGFRhi population. These fractions are refractory also to T cells recognizing non-differentiation antigens, as well as to BRAF + MEK inhibitors. NGFRhi cells induce the neurotrophic factor BDNF, which contributes to T cell resistance, as does NGFR. In melanoma patients, a tumor-intrinsic NGFR signature predicts anti-PD-1 therapy resistance, and NGFRhi tumor fractions are associated with immune exclusion. Lastly, pharmacologic NGFR inhibition restores tumor sensitivity to T cell attack in vitro and in melanoma xenografts. These findings demonstrate the existence of a stable and pre-existing NGFRhi multitherapy-refractory melanoma subpopulation, which ought to be eliminated to revert intrinsic resistance to immunotherapeutic intervention
Augmenting Immunotherapy Impact by Lowering Tumor TNF Cytotoxicity Threshold
New opportunities are needed to increase immune checkpoint blockade (ICB) impact for cancer patients. A genome-wide CRISPR/Cas9 screen uncovered several hits in the TNF pathway sensitizing tumor cells to T cell elimination. TNF antitumor activity was generally limited in tumors at baseline and in ICB non-responders, correlating with its low abundance. Selective inactivation of TNF signaling lowered melanoma and lung cancer thresholds to low TNF levels, thereby increasing tumor susceptibility to T cell attack and augmenting benefit from anti-PD-1 treatment
Early environmental quality and life-course mental health effects: The Equal-Life project
Background: There is increasing evidence that a complex interplay of factors within environments in which children grows up, contributes to children's suboptimal mental health and cognitive development. The concept of the life-course exposome helps to study the impact of the physical and social environment, including social inequities, on cognitive development and mental health over time. Methods: Equal-Life develops and tests combined exposures and their effects on children's mental health and cognitive development. Data from eight birth-cohorts and three school studies (N = 240.000) linked to exposure data, will provide insights and policy guidance into aspects of physical and social exposures hitherto untapped, at different scale levels and timeframes, while accounting for social inequities. Reasoning from the outcome point of view, relevant stakeholders participate in the formulation and validation of research questions, and in the formulation of environmental hazards. Exposure assessment combines GIS-based environmental indicators with omics approaches and new data sources, forming the early-life exposome. Statistical tools integrate data at different spatial and temporal granularity and combine exploratory machine learning models with hypothesis-driven causal modeling. Conclusions: Equal-Life contributes to the development and utilization of the exposome concept by (1) integrating the internal, physical and social exposomes, (2) studying a distinct set of life-course effects on a child's development and mental health (3) characterizing the child's environment at different developmental stages and in different activity spaces, (4) looking at supportive environments for child development, rather than merely pollutants, and (5) combining physical, social indicators with novel effect markers and using new data sources describing child activity patterns and environments
Ubiquitin ligase STUB1 destabilizes IFNγ-receptor complex to suppress tumor IFNγ signaling
The cytokine IFNγ differentially impacts on tumors upon immune checkpoint blockade (ICB). Despite our understanding of downstream signaling events, less is known about regulation of its receptor (IFNγ-R1). With an unbiased genome-wide CRISPR/Cas9 screen for critical regulators of IFNγ-R1 cell surface abundance, we identify STUB1 as an E3 ubiquitin ligase for IFNγ-R1 in complex with its signal-relaying kinase JAK1. STUB1 mediates ubiquitination-dependent proteasomal degradation of IFNγ-R1/JAK1 complex through IFNγ-R1K285 and JAK1K249. Conversely, STUB1 inactivation amplifies IFNγ signaling, sensitizing tumor cells to cytotoxic T cells in vitro. This is corroborated by an anticorrelation between STUB1 expression and IFNγ response in ICB-treated patients. Consistent with the context-dependent effects of IFNγ in vivo, anti-PD-1 response is increased in heterogenous tumors comprising both wildtype and STUB1-deficient cells, but not full STUB1 knockout tumors. These results uncover STUB1 as a critical regulator of IFNγ-R1, and highlight the context-dependency of STUB1-regulated IFNγ signaling for ICB outcome