329 research outputs found
Mott transition in Cr-doped V2O3 studied by ultrafast reflectivity: electron correlation effects on the transient response
The ultrafast response of the prototype Mott-Hubbard system (V1-xCrx)2O3 was
systematically studied with fs pump-probe reflectivity, allowing us to clearly
identify the effects of the metal-insulator transition on the transient
response. The isostructural nature of the phase transition in this material
made it possible to follow across the phase diagram the behaviour of the
detected coherent acoustic wave, whose average value and lifetime depend on the
thermodynamic phase and on the correlated electron density of states. It is
also shown how coherent lattice oscillations can play an important role in some
changes affecting the ultrafast electronic peak relaxation at the phase
transition, changes which should not be mistakenly attributed to genuine
electronic effects. These results clearly show that a thorough understanding of
the ultrafast response of the material over several tenths of ps is necessary
to correctly interpret its sub-ps excitation and relaxation regime, and appear
to be of general interest also for other strongly correlated materials.Comment: 6 pages, 3 figures. Europhysics Letters (in press
Powder bed monitoring via digital image analysis in additive manufacturing
Due to the nature of Selective Laser Melting process, the built parts suffer from high chances of defects formation. Powders quality have a significant impact on the final attributes of SLM-manufactured items. From a processing standpoint, it is
critical to ensure proper powder distribution and compaction in each layer of the powder bed, which is impacted by particle size distribution, packing density, flowability, and sphericity of the powder particles. Layer-by-layer study of the process can provide better understanding of the effect of powder bed on the final part quality. Image-based processing technique could be used to examine the quality of parts fabricated by Selective Laser Melting through layerwise monitoring and to evaluate the results achieved by other techniques. In this paper, a not supervised methodology based on Digital Image Processing through the build-inmachine camera is proposed. Since the limitation of the optical system in terms of resolution, positioning, lighting, field-of-view, many efforts were paid to the calibration and to the data processing. Its capability to individuate possible defects on SLM parts was evaluated by a Computer Tomography results verification
Selective laser melting process of Al–based pyramidal horns for the w-band: fabrication and testing
In the context of exploring the possibility of using Al-powder Selective Laser Meltingto fabricate horn antennas for astronomical applications at millimeter wavelengths,we describe the design, the fabrication, the mechanical characterization, and theelectromagnetic performance of additive manufactured horn antennas for the W-band. Our aim, in particular, is to evaluate the performance impact of two basickinds of surface post-processing (manual grinding and sand-blasting) to deal withthe well-known issue of high surface roughness in 3D printed devices. We performedcomparative tests of co-polar and cross-polar angular response across the whole W-band, assuming a commercially available rectangular horn antenna as a reference.Based on gain and directivity measurements of the manufactured samples, we finddecibel-level detectable deviations from the behavior of the reference horn antenna,and marginal evidence of performance degradation at the top edge of the W-band.We conclude that both kinds of post-processing allow achieving good performancefor the W-band, but the higher reliability and uniformity of the sand-blasting post-process encourage exploring similar techniques for further development of aluminumdevices at these frequencies
How regulating and cultural services of ecosystems have changed over time in Italy
In this experimental study, different components are computed for three different ecosystem services (ES). Specifically, supply, demand and use are estimated for pollination service, flood risk regulation service and nature-based tourism. These are analysed and assessed in 2012 and 2018 for the Italian context, in order to estimate the evolution over this period and to allow a significant comparison of results. The same methodology and models are applied for the selected accounting years and accounting tables and tend to reflect as closely as possible the System of Environmental-Economic Accounting-Ecosystem Accounting (SEEA EA), which is the international standard endorsed by the United Nations to compile Natural Capital Accounting in 2021. Both biophysical and monetary assessments are performed using the ARIES technology, an integrated modelling platform providing automatic and flexible integration of data and models, via its semantic modelling nature. Models have been run adjusting the components of the global modelling approach to the Italian context and, whenever available, prioritising the use of local data to carry out the study. This approach is particularly useful to analyse trends over time, as potentially biased components of models and data are substantially mitigated when the same biases is constant over time. This study finds an increase in benefits over the period analysed for the ES examined. The main contribution of this pioneering work is to support the idea that ES accounting or Natural Capital Accounting can provide a very useful tool to improve economic and environmental information at national and regional level. This can support processes to provide the necessary incentives to steer policy-making towards preventative rather than corrective actions, which are usually much less effective and more costly, both at environmental and economic levels. Nevertheless, particular attention must be paid to the meaning of the estimates and the drivers of these values to derive a direct or indirect relationship between the benefits observable and the actual Italian ecosystems condition. © Capriolo A et al
Antifibrotic treatment response and prognostic predictors in patients with idiopathic pulmonary fibrosis and exposed to occupational dust
BACKGROUND: Idiopathic Pulmonary Fibrosis (IPF) is an aggressive interstitial lung disease with an unpredictable course. Occupational dust exposure may contribute to IPF onset, but its impact on antifibrotic treatment and disease prognosis is still unknown. We evaluated clinical characteristics, respiratory function and prognostic predictors at diagnosis and at 12 month treatment of pirfenidone or nintedanib in IPF patients according to occupational dust exposure. METHODS: A total of 115 IPF patients were recruited. At diagnosis, we collected demographic, clinical characteristics, occupational history. Pulmonary function tests were performed and two prognostic indices [Gender, Age, Physiology (GAP) and Composite Physiologic Index (CPI)] calculated, both at diagnosis and after the 12 month treatment. The date of long-term oxygen therapy (LTOT) initiation was recorded during the entire follow-up (mean = 37.85, range 12-60 months). RESULTS: At baseline, patients exposed to occupational dust [≥ 10 years (n = 62)] showed a lower percentage of graduates (19.3% vs 54.7%; p = 0.04) and a higher percentage of asbestos exposure (46.8% vs 18.9%; p 0.002) than patients not exposed [< 10 years (n = 53)]. Both at diagnosis and after 12 months of antifibrotics, no significant differences for respiratory function and prognostic predictors were found. The multivariate analysis confirmed that occupational dust exposure did not affect neither FVC and DLCO after 12 month therapy nor the timing of LTOT initiation. CONCLUSION: Occupational dust exposure lasting 10 years or more does not seem to influence the therapeutic effects of antifibrotics and the prognostic predictors in patients with IPF
Tuning a Schottky barrier in a photoexcited topological insulator with transient Dirac cone electron-hole asymmetry
The advent of Dirac materials has made it possible to realize two dimensional
gases of relativistic fermions with unprecedented transport properties in
condensed matter. Their photoconductive control with ultrafast light pulses is
opening new perspectives for the transmission of current and information. Here
we show that the interplay of surface and bulk transient carrier dynamics in a
photoexcited topological insulator can control an essential parameter for
photoconductivity - the balance between excess electrons and holes in the Dirac
cone. This can result in a strongly out of equilibrium gas of hot relativistic
fermions, characterized by a surprisingly long lifetime of more than 50 ps, and
a simultaneous transient shift of chemical potential by as much as 100 meV. The
unique properties of this transient Dirac cone make it possible to tune with
ultrafast light pulses a relativistic nanoscale Schottky barrier, in a way that
is impossible with conventional optoelectronic materials.Comment: Nature Communications, in press (12 pages, 6 figures
Circulating microRNAs found dysregulated in ex-exposed asbestos workers and pleural mesothelioma patients as potential new biomarkers
Malignant pleural mesothelioma (MPM), a fatal cancer, is an occupational disease mostly affecting workers ex-exposed to asbestos fibers. The asbestos, a cancerogenic mineral of different chemical composition, was widely employed in western Countries in industrial manufactures of different types. MPM may arise after a long latency period, up to five decades. MPM is resistant to conventional chemo- and radio-therapies. Altogether, these data indicate that the identification of new and specific markers are of a paramount importance for an early diagnosis and treatment of MPM. In recent years, microRNAs expression was found dysregulated in patients, both in cancer cells and sera, affected by tumors of different histotypes, including MPM. Cell and circulanting microRNAs, found to be dysregulated in this neoplasia, were proposed as new biomarkers. It has been reported that circulating microRNAs are stable in biological fluids and could be employed as potential MPM biomarkers. In this investigation, circulating microRNAs (miR) from serum samples of MPM patients and workers ex-exposed to asbestos fibers (WEA) and healthy subjects (HS) were comparatively analyzed by microarray and RT-qPCR technologies. Our results allowed (i) to select MiR-3665, an endogenous stable microRNA, as the internal control to quantify in our analyses circulating miRNAs; to detect (ii) miR-197-3p, miR-1281 and miR 32-3p up-regulated in MPM compared to HS; (iii) miR-197-3p and miR-32-3p up-regulated in MPM compared to WEA; (iv) miR-1281 up-regulated in both MPM and WEA compared to HS. In conclusion, three circulating up-regulated microRNAs, i.e. miR-197-3p, miR-1281 and miR-32-3p are proposed as potential new MPM biomarker
Breathlessness, but not cough, suggests chronic obstructive pulmonary disease in elderly smokers with stable heart failure.
Chronic obstructive pulmonary disease (COPD) is a common comorbidity of heart failure (HF), but remains often undiagnosed, and we aimed to identify symptoms predicting COPD in HF. As part of an observational, prospective study, we investigated stable smokers with a confirmed diagnosis of HF, using the 8-item COPD-Assessment-Test (CAT) questionnaire to assess symptoms. All the items were correlated with the presence of COPD, and logistic regression models were used to identify independent predictors. 96 HF patients were included, aged 74, 33% with COPD. Patients with HF and COPD were more symptomatic, but only breathlessness when walking up a hill was an independent predictor of COPD (odds ratio=1.33, p=0.0484). Interestingly, COPD-specific symptoms such as cough and phlegm were not significant. Thus, in elderly smokers with stable HF, significant breathlessness when walking up a hill is most indicative of associated COPD, and may indicate the need for further lung function evaluation
- …