87 research outputs found

    Nucleotide, Cytogenetic and Expression Impact of the Human Chromosome 8p23.1 Inversion Polymorphism

    Get PDF
    Background: the human chromosome 8p23.1 region contains a 3.8-4.5 Mb segment which can be found in different orientations (defined as genomic inversion) among individuals. The identification of single nucleotide polymorphisms (SNPs) tightly linked to the genomic orientation of a given region should be useful to indirectly evaluate the genotypes of large genomic orientations in the individuals. Results: we have identified 16 SNPs, which are in linkage disequilibrium (LD) with the 8p23.1 inversion as detected by fluorescent in situ hybridization (FISH). The variability of the 8p23.1 orientation in 150 HapMap samples was predicted using this set of SNPs and was verified by FISH in a subset of samples. Four genes (NEIL2, MSRA, CTSB and BLK) were found differentially expressed (p<0.0005) according to the orientation of the 8p23.1 region. Finally, we have found variable levels of mosaicism for the orientation of the 8p23.1 as determined by FISH. Conclusion: by means of dense SNP genotyping of the region, haplotype-based computational analyses and FISH experiments we could infer and verify the orientation status of alleles in the 8p23.1 region by detecting two short haplotype stretches at both ends of the inverted region, which are likely the relic of the chromosome in which the original inversion occurred. Moreover, an impact of 8p23.1 inversion on gene expression levels cannot be ruled out, since four genes from this region have statistically significant different expression levels depending on the inversion status. FISH results in lymphoblastoid cell lines suggest the presence of mosaicism regarding the 8p23.1 inversion

    New instrument concepts for ocean sensing: analysis of the PAU-radiometer

    Get PDF
    Sea surface salinity can be remotely measured by means of L-band microwave radiometry. However, the brightness temperature also depends on the sea surface temperature and on the sea state, which is probably today one of the driving factors in the salinity retrieval error budgets of the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission and the NASA-Comision Nacional de Actividades Espaciales Aquarius/SAC-D mission. This paper describes the Passive Advanced Unit (PAU) for ocean monitoring. PAU combines in a single instrument three different sensors: an L-band radiometer with digital beamforming (DBF) (PAU-RAD) to measure the brightness temperature of the sea at different incidence angles simultaneously, a global positioning system (GPS) reflectometer [PAU-reflectometer of Global Navigation Satellite Signals (GNSS-R)] also with DBF to measure the sea state from the delay-Doppler maps, and two infrared radiometers to provide sea surface temperature estimates. The key characteristic of this instrument is that both PAU-RAD and the PAU-GNSS/R share completely the RF/IF front-end, and analog-to-digital converters. Since in order to track the GPS-reflected signal, it is not possible to chop the antenna signal as in a Dicke radiometer, a new radiometer topology has been devised which makes uses of two receiving chains and a correlator, which has the additional advantage that both PAU-RAD and PAU-GNSS/R can be operated continuously and simultaneously to perform the sea-state corrections of the brightness temperature. This paper presents the main characteristics of the different PAU subsystems, and analyzes in detail the PAU-radiometer concept.Peer Reviewe

    La carta fundacional

    Get PDF
    Una declaració d'intencions

    Study of maize plants effects in the retrieval of soil moisture using the interefence Ppttern GNSS-R technique

    Get PDF
    The use of Global Navigation Satellite Signals Reflections (GNSS-R) techniques to retrieve geophysical parameters from surfaces has been increased in the recent years. These techniques have resulted in suitable tools to obtain information about the sea state of oceans, which is very useful to improve the ocean salinity retrieval, and also, information about the soil moisture of lands. The present work focuses on the use of the Interference Pattern Technique (IPT), a particular type of GNSS-R technique, to study vegetation-covered soils. The IPT consists mainly of the measurement of the interference pattern between the GPS direct and reflected signals (the interference power), after they impinge over the ensemble soil surface and vegetation layer. The measured interference signal provides information on the soil moisture of the surface and also, on the vegetation height.Peer ReviewedPostprint (published version

    Reelin regulates the maturation of dendritic spines, synaptogenesis and glial ensheathment of newborn granule cells

    Get PDF
    The Reelin pathway is essential for both neural migration and for the development and maturation of synaptic connections. However, its role in adult synaptic formation and remodeling is still being investigated. Here, we investigated the impact of the Reelin/Dab1 pathway on the synaptogenesis of newborn granule cells (GCs) in the young-adult mouse hippocampus. We show that neither Reelin overexpression nor the inactivation of its intracellular adapter, Dab1, substantially alters dendritic spine numbers in these neurons. In contrast, 3D-electron microscopy (focused ion beam milling/scanning electron microscope) revealed that dysregulation of the Reelin/Dab1 pathway leads to both transient and permanent changes in the types and morphology of dendritic spines, mainly altering mushroom, filopodial, and branched GC spines. We also found that the Reelin/Dab1 pathway controls synaptic configuration of presynaptic boutons in the dentate gyrus, with its dysregulation leading to a substantial decrease in multi-synaptic bouton innervation. Lastly, we show that the Reelin/Dab1 pathway controls astroglial ensheathment of synapses. Thus, the Reelin pathway is a key regulator of adult-generated GC integration, by controlling dendritic spine types and shapes, their synaptic innervation patterns, and glial ensheathment. These findings may help to better understanding of hippocampal circuit alterations in neurological disorders in which the Reelin pathway is implicated. Significance Statement: The extracellular protein Reelin has an important role in neurological diseases, including epilepsy, Alzheimer's disease and psychiatric diseases, targeting hippocampal circuits. Here we address the role of Reelin in the development of synaptic contacts in adult-generated granule cells (GCs), a neuronal population that is crucial for learning and memory and implicated in neurological and psychiatric diseases. We found that the Reelin pathway controls the shapes, sizes, and types of dendritic spines, the complexity of multisynaptic innervations and the degree of the perisynaptic astroglial ensheathment that controls synaptic homeostasis. These findings show a pivotal role of Reelin in GC synaptogenesis and provide a foundation for structural circuit alterations caused by Reelin deregulation that may occur in neurological and psychiatric disorders

    An expert patient program to improve the empowerment and quality of life of people with multiple sclerosis : protocol for a multicenter pre-post intervention study

    Get PDF
    Multiple sclerosis (MS) causes a progressive disability, which substantially impacts the quality of life (QoL). Health interventions that meet the needs and demands of people with MS are essential to minimize QoL impairment. Expert patient programs (EPPs) facilitate health-related empowerment through peer learning. Based on a previous focus group study, we designed an EPP for MS coordinated by nursing professionals for implementation in the different MS reference units of Catalonia (Southwestern Europe). This study aims to evaluate the effects on quality of life, disease-related knowledge, and self-management related to the health process of the participants of the Expert Patient Program Catalonia™ for people with multiple sclerosis (EPPC-MS). Pre-post intervention multicenter clinical study involving 12 groups of 12 participants: six groups including relapsing and six groups including progressive MS patients, with 144 participants from 7 MS reference units from all over Catalonia, organized in six teams. The intervention will consist of nine telematic learning peer-led sessions (one weekly session). The expert patient (EP) leading the sessions will be an individual with MS with disease-related knowledge, who will be further trained by nurses to lead the sessions. Study variables will be measured before and immediately after the intervention and 6 and 12 months after the end of the sessions and will include: QoL, emotional impact, activation of the person, MS-related knowledge, fatigue, habits and lifestyles, health services use, and program-related experience. Baseline characteristics considered will be sociodemographic data, date of MS diagnosis and type, family history, and treatment characteristics. Variables related to disease follow-up will be new relapses and characteristics and changes in the ongoing treatment. The number of sessions attended will also be collected. Study variables will be analyzed using a pre-post comparison. Peer-led learning programs led by EP help empower people with chronic conditions and offer them tools to improve their autonomy and QoL. This study's intervention will be performed remotely, offering advantages both for people with chronic conditions and the healthcare system regarding the facilitation of family and work conciliation, saving time, simplifying attendance to meetings, lowering costs, and using fewer material resources

    Case Report: Localized bullous pemphigoid induced by local triggers: a case series and a proposal for diagnostic criteria based on a literature review

    Get PDF
    IntroductionLocalized bullous pemphigoid (LBP) is an infrequent bullous pemphigoid (BP) variant restricted to a body region. According to the most compelling evidence, LBP occurs in patients with pre-existent serum antibodies against the basement membrane zone, which occasionally acquire the capacity to induce disease after the influence of different local factors acting as triggers.MethodsWe hereby present a multicenter cohort of 7 patients with LBP developed after local triggers: radiotherapy, thermal burns, surgery, rosacea, edema and a paretic leg. In addition, we conducted a review of the literature, and we propose a set of diagnostic criteria for LBP, also based on our case series and the 2022 BP guidelines from the European Academy of Dermatology and Venereology.ResultsDuring follow-up, three of the patients from our series evolved to a generalized BP, with only one requiring hospitalization. Our literature search retrieved 47 articles including a total of 108 patients with LBP, with a 63% with a potential local precipitating factor previous to their diagnosis. LBP mostly affected older females, and a subsequent generalized progression occurred in 16.7% of the cases. The most frequently involved areas were the lower limbs. Radiation therapy and surgery were responsible for the inducement of nearly 2 in 3 cases of LBP. We observed a significantly higher risk of generalization in cases where the trigger led to the developing of LBP earlier (p=0.016). Our statistical analysis did not detect any other prognosis factor for generalization when assessing direct immunofluorescence, histological and serological results, or other patient related factors.ConclusionLBP should be suspected in patients with recurrent localized bullous eruptions. The presence of a trauma history in the same anatomic area is reported in most cases

    Reelin Regulates the Maturation of Dendritic Spines, Synaptogenesis and Glial Ensheathment of Newborn Granule Cells

    Get PDF
    The extracellular protein Reelin has an important role in neurological diseases, including epilepsy, Alzheimer's disease and psychiatric diseases, targeting hippocampal circuits. Here we address the role of Reelin in the development of synaptic contacts in adult-generated granule cells (GCs), a neuronal population that is crucial for learning and memory and implicated in neurological and psychiatric diseases. We found that the Reelin pathway controls the shapes, sizes, and types of dendritic spines, the complexity of multisynaptic innervations and the degree of the perisynaptic astroglial ensheathment that controls synaptic homeostasis. These findings show a pivotal role of Reelin in GC synaptogenesis and provide a foundation for structural circuit alterations caused by Reelin deregulation that may occur in neurological and psychiatric disorders
    corecore