9,970 research outputs found

    The LDEF ultra heavy cosmic ray experiment

    Get PDF
    The LDEF Ultra Heavy Cosmic Ray Experiment (UHCRE) used 16 side viewing LDEF trays giving a total geometry factor for high energy cosmic rays of 30 sq m sr. The total exposure factor was 170 sq m sr y. The experiment is based on a modular array of 192 solid state nuclear track detector stacks, mounted in sets of four in 48 pressure vessels. The extended duration of the LDEF mission has resulted in a greatly enhanced potential scientific yield from the UHCRE. Initial scanning results indicate that at least 1800 cosmic ray nuclei with Z greater than 65 were collected, including the world's first statistically significant sample of actinides. Post flight work to date and the current status of the experiment are reviewed

    Silent Springs: Why Are All the Frogs “Croaking”?

    Get PDF
    Amphibians are a fabulously successful group of animals; however, it is increasingly clear that they are experiencing extinction rates that far exceed those experienced by other classes of vertebrates. A new book examines the various reasons why amphibians are so threatened, and what can be done about it

    Progress report on the ultra heavy cosmic ray experiment (AO178)

    Get PDF
    The Ultra Heavy Cosmic Ray Experiment (UHCRE) is based on a modular array of 192 side-viewing solid state nuclear track detector stacks. These stacks were mounted in sets of four in 48 pressure vessels employing sixteen peripheral Long Duration Exposure Facility (LDEF) trays. The extended duration of the LDEF mission has resulted in a greatly enhanced scientific yield from the UHCRE. The geometry factor for high energy cosmic ray nuclei, allowing for Earth shadowing, was 30 sq m-sr, giving a total exposure factor of 170 sq m-sr-y at an orbital inclination of 28.4 degrees. Scanning results indicate that about 3000 cosmic ray nuclei in the charge region with Z greater than 65 were collected. This sample is more than ten times the current world data in the field (taken to be the data set from the HEAO-3 mission plus that from the Ariel-6 mission) and is sufficient to provide the world's first statistically significant sample of actinide (Z greater than 88) cosmic rays. Results to date are presented including details of ultra-heavy cosmic ray nuclei, analysis of pre-flight and post-flight calibration events and details of track response in the context of detector temperature history. The integrated effect of all temperature and age related latent track variations cause a maximum charge shift of +/- 0.8 e for uranium and +/- 0.6 e for the platinum-lead group. The precision of charge assignment as a function of energy is derived and evidence for remarkably good charge resolution achieved in the UHCRE is considered. Astrophysical implications of the UHCRE charge spectrum are discussed

    Galaxy Groups in the SDSS DR4: II. halo occupation statistics

    Full text link
    We investigate various halo occupation statistics using a large galaxy group catalogue constructed from the SDSS DR4 with an adaptive halo-based group finder. The conditional luminosity function (CLF) is measured separately for all, red and blue galaxies, as well as in terms of central and satellite galaxies. The CLFs for central and satellite galaxies can be well modelled with a log-normal distribution and a modified Schechter form, respectively. About 85% of the central galaxies and about 80% of the satellite galaxies in halos with masses M_h\ga 10^{14}\msunh are red galaxies. These numbers decrease to 50% and 40%, respectively, in halos with M_h \sim 10^{12}\msunh. For halos of a given mass, the distribution of the luminosities of central galaxies, LcL_c, has a dispersion of about 0.15 dex. The mean luminosity (stellar mass) of the central galaxies scales with halo mass as LcMh0.17L_c\propto M_h^{0.17} (M,cMh0.22M_{*,c}\propto M_h^{0.22}) for halos with masses M\gg 10^{12.5}\msunh, and both relations are significantly steeper for less massive halos. We also measure the luminosity (stellar mass) gap between the first and second brightest (most massive) member galaxies, logL1logL2\log L_1 - \log L_2 (logM,1logM,2\log M_{*,1}-\log M_{*,2}). These gap statistics, especially in halos with M_h \la 10^{14.0}\msunh, indicate that the luminosities of central galaxies are clearly distinct from those of their satellites. The fraction of fossil groups, defined as those groups with logL1logL20.8\log L_1 - \log L_2\ge 0.8, ranges from 2.5\sim 2.5% for groups with M_h\sim 10^{14}\msunh to 18-60% for groups with M_h\sim 10^{13}\msunh. Finally, we measure the fraction of satellites, which changes from 5.0\sim 5.0% for galaxies with \rmag\sim -22.0 to 40\sim40% for galaxies with \rmag\sim -17.0. (abridged)Comment: 16 pages, 11 figures. Accepted for publication in Ap

    The clustering of SDSS galaxy groups: mass and color dependence

    Full text link
    We use a sample of galaxy groups selected from the SDSS DR 4 with an adaptive halo-based group finder to probe how the clustering strength of groups depends on their masses and colors. In particular, we determine the relative biases of groups of different masses, as well as that of groups with the same mass but with different colors. In agreement with previous studies, we find that more massive groups are more strongly clustered, and the inferred mass dependence of the halo bias is in good agreement with predictions for the Λ\LambdaCDM cosmology. Regarding the color dependence, we find that groups with red centrals are more strongly clustered than groups of the same mass but with blue centrals. Similar results are obtained when the color of a group is defined to be the total color of its member galaxies. The color dependence is more prominent in less massive groups and becomes insignificant in groups with masses \gta 10^{14}\msunh. We construct a mock galaxy redshift survey constructed from the large Millenium simulation that is populated with galaxies according to the semi-analytical model of Croton et al. Applying our group finder to this mock survey, and analyzing the mock data in exactly the same way as the true data, we are able to accurately recover the intrinsic mass and color dependencies of the halo bias in the model. This suggests that our group finding algorithm and our method of assigning group masses do not induce spurious mass and/or color dependencies in the group-galaxy correlation function. The semi-analytical model reveals the same color dependence of the halo bias as we find in our group catalogue. In halos with M\sim 10^{12}\msunh, though, the strength of the color dependence is much stronger in the model than in the data.Comment: 16 pages, 14 figures, Accepted for publication in ApJ. In the new version, we add the bias of the shuffled galaxy sample. The errors are estimated according to the covariance matrix of the GGCCF, which is then diagonalize

    ESAO: A holistic Ecosystem-Driven Analysis Model

    Get PDF
    The growing importance of software ecosystems and open innovation requires that companies become more intentional about aligning their internal strategy, architecture and organizing efforts with the ecosystem that the company is part of. Few models exist that facilitate analysis and improvement of this alignment. In this paper, we present the ESAO model and describe its six main components. Organizations and researchers can use the model to analyze the alignment between the different parts of their business, technologies and ways of working, internally and in the ecosystem. The model is illustrated and validated through the use of three case studies

    Electron gas polarization effect induced by heavy H-like ions of moderate velocities channeled in a silicon crystal

    Get PDF
    We report on the observation of a strong perturbation of the electron gas induced by 20 MeV/u U91+^{91+} ions and 13 MeV/u Pb81+^{81+} ions channeled in silicon crystals. This collective response (wake effect) in-duces a shift of the continuum energy level by more than 100 eV, which is observed by means of Radiative Electron Capture into the K and L-shells of the projectiles. We also observe an increase of the REC probability by 20-50% relative to the probability in a non-perturbed electron gas. The energy shift is in agreement with calculations using the linear response theory, whereas the local electron density enhancement is much smaller than predicted by the same model. This shows that, for the small values of the adiabaticity parameter achieved in our experiments, the density fluctuations are not strongly localized at the vicinity of the heavy ions
    corecore