152 research outputs found

    Thermoelectric performance of multiphase XNiSn (X = Ti, Zr, Hf) half-Heusler alloys

    Get PDF
    Quantitative X-ray powder diffraction analysis demonstrates that mixing Ti, Zr and Hf on the ionic site in the half-Heusler structure, which is a common strategy to lower the lattice thermal conductivity in this important class of thermoelectric materials, leads to multiphase behaviour. For example, nominal Ti0.5Zr0.5NiSn has a distribution of Ti1−xZrxNiSn compositions between 0.24 ≤ x ≤ 0.70. Similar variations are observed for Zr0.50Hf0.5NiSn and Ti0.5Hf0.5NiSn. Electron microscopy and elemental mapping demonstrate that the main compositional variations occur over micrometre length scales. The thermoelectric power factors of the mixed phase samples are improved compared to the single phase end-members (e.g. S2/ρ = 1.8 mW m−1 K−2 for Ti0.5Zr0.5NiSn, compared to S2/ρ = 1.5 mW m−1 K−2 for TiNiSn), demonstrating that the multiphase behaviour is not detrimental to electronic transport. Thermal conductivity measurements for Ti0.5Zr0.5NiSn0.95 suggest that the dominant reduction comes from Ti/Zr mass and size difference phonon scattering with the multiphase behaviour a secondary effect

    Metal Distributions, Efficient n-Type Doping, and Evidence for in-Gap States in TiNiM<sub><i>y</i></sub>Sn (M = Co, Ni, Cu) half-Heusler Nanocomposites

    Get PDF
    XNi1+ySn nanocomposites consisting of a XNiSn half-Heusler (HH) matrix with segregated XNi2Sn Full Heusler (FH) inclusions promise improvements in thermoelectric efficiencies. We extend recent research by reporting on TiNiMySn (0 ≤ y ≤ 1) nanocomposites with M = Co (3d9), Ni (3d10) and Cu (3d104s1). Neutron powder diffraction reveals that the Ni and Cu series produce a matrix of TiNiSn with nanosegregated TiNi2Sn and TiNi1+dCu1–dSn, respectively. For the Co series, the Co inserts into both phases to obtain a TiNi1–yCoySn matrix with nanosegregated TiNi2–yCoySn. Systematic changes in Seebeck coefficient (S) and electrical resistivity (ρ) are observed in all three series. For M = Ni, changes in S and ρ are attributed to in-gap states arising from the nanosegregation. The M = Co composites show a complex interplay between the hole doped TiNi1–yCoySn matrix and similar in-gap states, where the p- to n-type transition temperature increases but the maximum S remains unchanged at +30 μV K–1. The 4s1 electron for M = Cu is delocalized in the HH matrix, leading to metal-like ρ(T) and up to 100% improved thermoelectric power factors compared to TiNiSn (S2/ρ = 2 mW m–1 K–2 at 600–700 K for y = 0.025). These results broaden the range of segregated FH phases that could be used to enhance HH thermoelectric performance

    Inelastic neutron scattering study of crystal field excitations of Nd<sup>3+</sup> in NdFeAsO

    Get PDF
    Inelastic neutron scattering experiments were performed to investigate the crystalline electric field (CEF) excitations of Nd3+ (J = 9/2) in the iron pnictide NdFeAsO. The crystal field level structures for both the high-temperature paramagnetic phase and the low-temperature antiferromagnetic phase of NdFeAsO are constructed. The variation of CEF excitations of Nd3+ reflects not only the change of local symmetry but also the change of magnetic ordered state of the Fe sublattice. By analyzing the crystal field interaction with a crystal field Hamiltonian, the crystal field parameters are obtained. It was found that the sign of the fourth and sixth-order crystal field parameters change upon the magnetic phase transition at 140 K, which may be due to the variation of exchange interactions between the 4f and conduction electrons.Comment: 5 pages, 4 figure

    Thermoelectric properties and high-temperature stability of the Ti<sub>1-x</sub>V<sub>x</sub>CoSb<sub>1-x</sub>Sn<sub>x</sub> half-Heusler alloys

    Get PDF
    The thermoelectric properties and high-temperature stability of the Ti1−xVxCoSb1−xSnx solid solution have been investigated.</p

    Impact of Nb vacancies and p-type doping of the NbCoSn-NbCoSb half-Heusler thermoelectrics

    Get PDF
    Nb vacancies maintain a semiconducting electron count and cause strong mass fluctuation phonon scattering enabling good thermoelectric performance.</p

    Superconductivity in NdFe1-xCoxAsO (0.05 < x < 0.20) and rare-earth magnetic ordering in NdCoAsO

    Get PDF
    The phase diagram of NdFe1-xCoxAsO for low cobalt substitution consists of a superconducting dome (0.05 < x < 0.20) with a maximum critical temperature of 16.5(2) K for x = 0.12. The x = 1 end member, NdCoAsO, is an itinerant ferromagnet (TC = 85 K) with an ordered moment of 0.30(1) BM at 15 K. Below TN = 9 K, Nd spin-ordering results in the antiferromagnetic coupling of the existing ferromagnetic planes. Rietveld analysis reveals that the electronically important two-fold tetrahedral angle increases from 111.4 to 115.9 deg. in this series. Underdoped samples with x = 0.046(2) and x = 0.065(2) show distortions to the orthorhombic Cmma structure at 72(2) and 64(2) K, respectively. The temperature dependences of the critical fields Hc2(T) near Tc are linear with almost identical slopes of 2.3(1) T K-1 for x = 0.065(2), x = 0.118(2) and x = 0.172(2). The estimated critical field Hc2(0) and correlation length for optimally doped samples are 26(1) T and 36(1) Angstrom. A comparison of the maximum reported critical temperatures of well-characterized cobalt doped 122- and 1111-type superconductors is presented.Comment: accepted to PR

    New sustainable ternary copper phosphide thermoelectrics

    Get PDF
    Funding: R. J. Q. and J.-W. G. B. acknowledge the Leverhulme Trust (RPG-2020-177). A. D. H. acknowledges the EPSRC (EP/ R013004/1).The thermoelectric performance of ACuP (A = Mg and Ca) with abundant elements and low gravimetric density is reported. Both systems are p-type doped by intrinsic Cu vacancy defects, have large power factors and promising figures of merit, reaching zT = 0.5 at 800 K. This demonstrates that copper phosphides are a potential new class of thermoelectric materials for waste heat harvesting.Publisher PDFPeer reviewe

    Effect of spark plasma sintering on the structure and properties of Ti1-xZrxNiSn half-heusler alloys

    Get PDF
    XNiSn (X = Ti, Zr and Hf) half-Heusler alloys have promising thermoelectric properties and are attracting enormous interest for use in waste heat recovery. In particular, multiphase behaviour has been linked to reduced lattice thermal conductivities, which enables improved energy conversion efficiencies. This manuscript describes the impact of spark plasma sintering (SPS) on the phase distributions and thermoelectric properties of Ti0.5Zr0.5NiSn based half-Heuslers. Rietveld analysis reveals small changes in composition, while measurement of the Seebeck coefficient and electrical resistivities reveals that all SPS treated samples are electron doped compared to the as-prepared samples. The lattice thermal conductivities fall between 4 W·m−1·K−1 at 350 K and 3 W·m−1·K−1 at 740 K. A maximum ZT = 0.7 at 740 K is observed in a sample with nominal Ti0.5Zr0.5NiSn composition
    corecore