450 research outputs found

    Programmable models of growth and mutation of cancer-cell populations

    Full text link
    In this paper we propose a systematic approach to construct mathematical models describing populations of cancer-cells at different stages of disease development. The methodology we propose is based on stochastic Concurrent Constraint Programming, a flexible stochastic modelling language. The methodology is tested on (and partially motivated by) the study of prostate cancer. In particular, we prove how our method is suitable to systematically reconstruct different mathematical models of prostate cancer growth - together with interactions with different kinds of hormone therapy - at different levels of refinement.Comment: In Proceedings CompMod 2011, arXiv:1109.104

    Hamming-like distances for ill-defined strings in linguistic classification

    Get PDF
    Ill-defined strings often occur in soft sciences, e.g. in linguistics or in biology. In this paper we consider l-length strings which have in each position one of the three symbols 0 or false, 1 or true, b or irrelevant. We tackle some generalisations of the usual Hamming distance between binary crisp strings which were recently used in computational linguistics. We comment on their metric properties, since these should guide the selection of the clustering algorithm to be used for language classification. The concluding section is devoted to future work, and the string approach, as currently pursued, is compared to alternative approaches

    Stochastic concurrent constraint programming and differential equations

    Get PDF
    We tackle the problem of relating models of systems (mainly biological systems) based on stochastic process algebras (SPA) with models based on differential equations. We define a syntactic procedure that translates programs written in stochastic Concurrent Constraint Programming (sCCP) into a set of Ordinary Differential Equations (ODE), and also the inverse procedure translating ODE's into sCCP programs. For the class of biochemical reactions, we show that the translation is correct w.r.t. the intended rate semantics of the models. Finally, we show that the translation does not generally preserve the dynamical behavior, giving a list of open research problems in this direction

    Mean-Field Limits Beyond Ordinary Differential Equations

    Get PDF
    16th International School on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM 2016, Bertinoro, Italy, June 20-24, 2016, Advanced LecturesInternational audienceWe study the limiting behaviour of stochastic models of populations of interacting agents, as the number of agents goes to infinity. Classical mean-field results have established that this limiting behaviour is described by an ordinary differential equation (ODE) under two conditions: (1) that the dynamics is smooth; and (2) that the population is composed of a finite number of homogeneous sub-populations, each containing a large number of agents. This paper reviews recent work showing what happens if these conditions do not hold. In these cases, it is still possible to exhibit a limiting regime at the price of replacing the ODE by a more complex dynamical system. In the case of non-smooth or uncertain dynamics, the limiting regime is given by a differential inclusion. In the case of multiple population scales, the ODE is replaced by a stochastic hybrid automaton

    Resilience of Bayesian Layer-Wise Explanations under Adversarial Attacks

    Get PDF
    We consider the problem of the stability of saliency-based explanations of Neural Network predictions under adversarial attacks in a classification task. Saliency interpretations of deterministic Neural Networks are remarkably brittle even when the attacks fail, i.e. for attacks that do not change the classification label. We empirically show that interpretations provided by Bayesian Neural Networks are considerably more stable under adversarial perturbations of the inputs and even under direct attacks to the explanations. By leveraging recent results, we also provide a theoretical explanation of this result in terms of the geometry of the data manifold. Additionally, we discuss the stability of the interpretations of high level representations of the inputs in the internal layers of a Network. Our results demonstrate that Bayesian methods, in addition to being more robust to adversarial attacks, have the potential to provide more stable and interpretable assessments of Neural Network predictions

    Fluid approximation of broadcasting systems

    Get PDF
    Nature-inspired paradigms have been proposed to design and forecast behaviour of open distributed systems, such as sensor networks and the internet of things. In these paradigms system behaviour emerges from (complex) interactions among a large number of agents. Modelling these interactions in terms of classical point-to-point communication is often not practical. This is due to the large scale and the open nature of the systems, which means that partners for point-to-point communication may not be available at any given time. Nevertheless the need for efficient formal verification of qualitative and quantitative properties of these systems is of utmost importance, especially given their proposed pervasive and transparent nature. CARMA is a recently proposed formal modelling language for open distributed systems, which is equipped with a broadcast communication in order to meet the communication challenges of such systems. The inclusion of quantitative information about the timing and probability of actions gives rise to models suitable for analysing questions such as the probability that information will achieve total coverage within a system, or the expected market share that might be gained by competing service providers relying on viral advertising. The ability to express models is not the only challenge, because the scale of the systems we are interested in often defies discrete state-based analysis techniques such as stochastic simulation. This is the problem that we address in this paper as we consider how to provide an efficient fluid approximation, supporting efficient and accurate quantitative analysis of large scale systems, for a language that incorporates broadcast communication

    Neural Predictive Monitoring for Collective Adaptive Systems

    Get PDF
    Reliable bike-sharing systems can lead to numerous environmental, economic and social benefits and therefore play a central role in the effective development of smart cities. Bike-sharing models deal with spatially distributed stations and interact with an unpredictable environment, the users. Monitoring the trustworthiness of such a collective system is of paramount importance to ensure a good quality of the delivered service, but this task can become computationally demanding due to the complexity of the model under study. Neural Predictive Monitoring (NPM) [5], a neural-network learning-based approach to predictive monitoring (PM) with statistical guarantees, can be employed to preemptively detect violations of a specific requirement – e.g. a station has no more bikes available or a station is full. The computational efficiency of NPM makes PM applicable at runtime even on embedded devices with limited computational power. The goal of this paper is to demonstrate the applicability of NPM on collective adaptive systems such as bike-sharing systems. In particular, we first analyze the performance of NPM over a collective system evolving deterministically. Then, following [7], we tackle a more realistic scenario, where sensors allow only for partial observability and where the system evolves in a stochastic fashion. We evaluate the approach on multiple bike-sharing network topologies, obtaining highly accurate predictions and effective error detection rules

    Generative abstraction of Markov population processes

    Get PDF
    Markov population models are a widespread formalism used to model the dynamics of complex systems, with applications in systems biology and many other fields. The associated Markov stochastic process in continuous time is often analyzed by simulation, which can be costly for large or stiff systems, particularly when a massive number of simulations has to be performed, e.g. in a multi-scale model. A strategy to reduce computational load is to abstract the population model, replacing it with a simpler stochastic model, faster to simulate. Here we pursue this idea, exploring and comparing state-of-the-art generative models, which are flexible enough to automatically learn distributions over entire trajectories, rather than single simulation steps, from observed realizations of the system. In particular, we compare a Generative Adversarial setting with a Score-based Diffusion approach and show how the latter outperforms the former both in terms of accuracy and stability at the cost of slightly higher simulation times. To improve the accuracy of abstract samples, we develop an active learning framework to enrich our dataset with observations whose expected satisfaction of a temporal requirement differs significantly from the abstract one. We experimentally show how the proposed abstractions are well suited to work on multi-scale and data-driven scenarios, meaning that we can infer a (black-box) dynamical model from a pool of real data.(c) 2023 Elsevier B.V. All rights reserved

    MoonLight: a lightweight tool for monitoring spatio-temporal properties

    Get PDF
    We present MoonLight, a tool for monitoring temporal and spatio-temporal properties of mobile, spatially distributed, and interacting entities such as biological and cyber-physical systems. In MoonLight the space is represented as a weighted graph describing the topological configuration in which the single entities are arranged. Both nodes and edges have attributes modeling physical quantities and logical states of the system evolving in time. MoonLight is implemented in Java and supports the monitoring of Spatio-Temporal Reach and Escape Logic (STREL). MoonLight can be used as a standalone command line tool, such as Java API, or via MatlabTM and Python interfaces. We provide here the description of the tool, its interfaces, and its scripting language using a sensor network and a bike sharing example. We evaluate the tool performances both by comparing it with other tools specialized in monitoring only temporal properties and by monitoring spatio-temporal requirements considering different sizes of dynamical and spatial graphs

    Polarity assessment of reflection seismic data: a Deep Learning approach

    Get PDF
    We propose a procedure for the polarity assessment in reflection seismic data based on a Neural Network approach. The algorithm is based on a fully 1D approach, which does not require any input besides the seismic data since the necessary parameters are all automatically estimated. An added benefit is that the prediction has an associated probability, which automatically quantifies the reliability of the results. We tested the proposed procedure on synthetic and real reflection seismic data sets. The algorithm is able to correctly extract the seismic horizons also in case of complex conditions, such as along the flanks of salt domes, and is able to track polarity inversions
    • …
    corecore