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Hamming-like Distances

for Ill-defined Strings

in Linguistic Classification

Luca Bortolussi and Andrea Sgarro (∗)

Dedicated to the memory of Fabio Rossi.

Summary. - Ill-defined strings often occur in soft sciences, e.g. in
linguistics or in biology. In this paper we consider ℓ-length strings
which have in each position one of the three symbols 0 or false,
1 or true, ♭ or irrelevant. We tackle some generalisations of
the usual Hamming distance between binary crisp strings which
were recently used in computational linguistics. We comment on
their metric properties, since these should guide the selection of
the clustering algorithm to be used for language classification.
The concluding section is devoted to future work, and the string
approach, as currently pursued, is compared to alternative ap-
proaches.

1. Ill-defined strings

Strings in linguistics or in biology, and more generally in soft sciences,
are often ill-defined, and so the crisp tools of traditional mathematics
fall short of the task. Ill-defined strings were recently used in papers
devoted to the classification of languages following syntactic criteria,
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rather than lexical [5], and ad-hoc distances were used in order to
cluster such languages. More specifically, certain syntactic features
are chosen, ℓ say, and to each language an ℓ-length string is associ-
ated, which has a 1 or a 0 in position i according whether feature
i is present or, respectively, absent; in moot situations, however, a
third symbol ♭ is written down.

Basically, distances as in [5] fit into a family of generalised Ham-
ming distances, which are parametrised by a parameter w ∈ [0, 1].
For w = 1/2 one re-finds the so-called fuzzy Hamming distance,
introduced independently by several authors into the fuzzy set liter-
ature: actually, the fuzzy Hamming distance had already been used
by the linguist Ž. Muljačić for a classification of Romance languages
back in 1967, a remarkable fact, indeed ([6], cf. also [10] or [9]). The
analogy to fuzzy distances, however, should not be over-emphasised:
in our case, the meaning of ♭ is “it doesn’t really make sense”, while
in the fuzzy case the feature does make sense in itself, but it is not
clear to what degree it is present (it is true); it is not surprising,
therefore, that the generalised Hamming distance as pursued below
and the fuzzy Hamming distance boil down to the same thing only
when w = 1/2. We shall come back to this point in section 4, but
below the term “fuzzy” will not be used for our distance, since it
would be misleading: one is dealing here with yet another facet of
representing and managing incomplete knowledge.

In this paper we investigate the metric properties of the family of
distances dw; in particular, we check whether the triangle inequality
is or is not violated: bad news are in store for w < 1/2; cf. section 2
(by the way the fuzzy Hamming distance proper is always triangular,
cf. [10]). The variant preferred by [5], called below δ, corresponds
to w = 0, but it is normalised w.r. to “sound” (crisp) components
only, and is definitely unruly; cf. Section 3. All this should be made
good use of before choosing the clustering algorithm to be selected:
that is why in Section 2 we check the triangular property with such
fastidiousness. Specifically, in [5] the authors use agglomerative hier-
archical clustering algorithms, which work by merging at each step
the two closest clusters. The delicate point here is the definition
of the distance between two clusters, given the pairwise distances
among their members. The method chosen in [5], known as UP-
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GMA [11], defines the distance between two groups as the average
of the pairwise distances of their members. It is precisely the av-
eraging that is a questionable operation when the distance is not a
(pseudo)metric, as underlined by several authors, cf. [2]. Actually,
other aggregation mechanisms may be used instead of the average,
see the final section 6.

Section 4 tackles dependencies between features; cf. also Section 6
on future work. Section 5 has a more matter-of-fact nature, and fo-
cuses on actual data as processed in [5]: it will turn out that the
triple Greek - Romanian - Norwegian is especially worrying from a
metric point of view. The concluding section 6 envisages future work;
the string approach, as currently pursued, is compared to alternative
approaches based on Q-matrices and tree distances, such as to better
account for logical dependencies between the ℓ features, without hav-
ing to resort to ANOVA-type techniques of feature reduction, whose
adequacy here is dubious.

2. Metric properties of the generalised Hamming

distance

If x and y are two binary string of the same length ℓ, their Hamming
distance dH(x, y) is the number of positions where they are different.
As well-known, the Hamming distance is a genuine metric distance;
in particular, it verifies the triangle inequality dH(x, z) + dH(z, y) ≥
dH(x, y) for any three binary strings x, y and z. We add a third
symbol, called the blank symbol ♭, to obtain the ternary alphabet
A = {0, 1, ♭}. For any x, we denote by b(x) the number of its blanks,
i.e. the number of occurrences of the “odd” symbol ♭ in x. We
say that a string is ill-defined whenever it has at least one blank,
b(x) ≥ 1. Instead, if b(x) = 0 we say that x is crisp; ℓ − b(x) is the
number of positions where x is crisp. If b = b(x, y) is the number
of positions where at least one of the two strings has a blank, one
has b(x, y) ≥ b(x, x) = b(x) ≥ 0; ℓ − d − b is the number of crisp
coincidences.

Let w be a weight belonging to the real interval [0, 1]; we ex-
tend the usual Hamming distance between crisp binary strings to
the following extended distance dw(x, y) = dw(x1x2 . . . xℓ, y1y2 . . . yℓ)
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between ill-defined ternary strings:

Definition 2.1. Set dw(x, y) =
∑

i dw(xi, yi) with the dw(xi, yi)’s
as in the following matrix:

dw(xi, yi) 0 1 ♭

0 0 1 w
1 1 0 w
♭ w w w

The balanced option w = 1/2 corresponds (at least formally) to
the fuzzy Hamming distance as covered in the literature when the
logic involved is ternary, and the degree of truth of the statement ”in
position i the symbols xi and yi are distinct” belongs to {0, 1/2, 1}.
We find it convenient to deal separately with the limit cases w = 0
(blanks always yield crisp equalities) and w = 1 (blanks always yield
crisp inequalities), whatever the symbol they are matched with. Be-
side the balanced option w = 1/2, the options w = 0 as basically
used in [5] and w = 1 appear to be the most appealing for applica-
tions; the general case of any w will be soon found by convexity; cf.
below. Clearly, if w > w′ one has dw(x, y) ≥ dw′(x, y) with equal-
ity iff x, y are both crisp, when everything boils down to the usual
(binary) Hamming distance. We start with w = 0.

Formal properties of d0(x, y):

• d0(x, y) is non-negative and symmetric: d0(x, y) = d0(y, x) ≥
0;

• d0(x, y) ≥ d0(x, x) = 0;

• d0(x, y) = 0 iff x and y coincide in those positions where there
are no blanks;

• d0(x, y) ≤ ℓ;

• d0(x, y) = ℓ iff x and y are both crisp and they differ in each
position;
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This is straightforwardly proved (iff means if and only if). The
triangle inequality may fail to hold; we deepen this point in theo-
rem 2.2, after giving some notation.

Fix a position i, 0 ≤ i ≤ ℓ; the following might occur:

α) there is no blank, and xi = yi 6= zi;

β) all three symbols occur, and zi is crisp

ξ) all three symbols occur, and zi is a blank

Whatever ℓ, let α = α(x, z, y) , β = β(x, z, y) and ξ = ξ(x, z, y)
denote (also) the number of positions of type α, β, ξ, respectively
(the slight notational ambiguity turns out to be convenient).

Theorem 2.2. 1. d0(x, z) + d0(z, y) − d0(x, y) = 2α + β − ξ

2. d0(x, z) + d0(z, y) − d0(x, y) ≥ −b(z)

3. For given z, the lower bound holds with equality iff xi and yi

are crisp and different in those positions i where z has a blank,
while in those positions i where zi is crisp either xi and yi are
both blank, or there is at least an equality involving zi.

Proof. Assume for the moment ℓ = 1; then d can be either 0 or
1. The triangle inequality is not verified with equality, in the case
d0(x, z) + d0(z, y) = 2, d0(x, y) = 0, which corresponds to α, in the
case d0(x, z)+d0(z, y) = 1, d0(x, y) = 0 which corresponds to β (the
case d0(x, z) + d0(z, y) = 2, d0(x, y) = 1 cannot hold), and in the
case d0(x, z) + d0(z, y) = 0, d0(x, y) = 1, which corresponds to ξ.
Given the additive nature of of our distance, this is enough to prove
the equality. As for the lower bound, clearly ∆ ≥ −ξ ≥ b(z). As for
equality in the bound, one has to choose x, y so that case ξ always
holds where zi is a blank, while cases α and β never hold where it is
crisp.

The triangle inequality fails whenever 2α + β < ξ; the lower
bound −b(z) can be met with equality even if x, y are constrained
to be crisp. Observe that the triangle inequality certainly holds for
all x, y iff the “intermediate” string z is crisp.

Let us turn to the limit case w = 1; while in the case of d0 a
blank contributed for 0, now it contributes for 1, whatever symbol
it is matched with.
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Formal properties of d1(x, y):

• d1 is non-negative and symmetric, d1(x, y) = d1(y, x) ≥ 0;

• d1(x, y) ≥ d1(x, x) = b(x) ≥ 0;

• d1(x, y) = 0 iff x and y are crisp and coincident;

• d1(x, y) ≤ ℓ

• d1(x, y) = ℓ iff x and y are differ in each position where they
are both crisp;

• the triangle inequality holds: d1(x, z) + d1(z, y) ≥ d1(x, y) (cf.
Theorem 2.3)

Below let σ = σ(x, y, z) and η = η(x, y, z) be the number of positions
where:

σ) xi, yi are crisp and coincide while zi is a blank,

η) there are two or even three blanks, respectively, while α =
α(x, y, z), β = β(x, y, z) and ξ = ξ(x, y, z) are as above.

Observe that [α+σ] gives the number of positions where x, y are crisp
and coincident, z is different whether crisp or blank, while [β + ξ]
gives the number of positions where all the three distinct symbols
occur in x, y, z.

Theorem 2.3. 1. d1(x, z) + d1(z, y)− d1(x, y) = 2 [α + σ] + [β +
ξ] + η ≥ 0.

2. The triangle inequality holds with equality iff in each position
there is at least a crisp coincidence involving z; in particular,
to have equality z must be crisp.

Proof. The triangle inequality holds with equality iff α = σ = β =
ξ = η = 0; one can resort to a direct check, as in theorem 2.2.

Now, dw(x, y) is a weighted average of d0 and d1:

dw(x, y) = (1 − w) d0

(

x, y
)

+ w d1

(

x, y
)

, 0 ≤ w ≤ 1
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In this case a blank contributes for w whatever symbol it is matched
with, inclusive of itself. For w = 1/2, which corresponds to the usual
arithmetic average, one re-obtains the “old” fuzzy Hamming distance
dF = d1/2 . For w ≥ 1/2, dw(x, y) verifies the triangle inequality; the
following statements are soon derived from what precedes.

Formal properties of dw(x, y), 0 < w < 1:

• dw is non-negative and symmetric, dw(x, y) = dw(y, x) ≥ 0;

• dw(x, y) = 0 iff x and y are crisp and coincident;

• dw(x, y) ≥ dw(x, x) = w b(x) ≥ 0;

• dw(x, y) ≤ ℓ

• dw(x, y) = ℓ iff x and y are both crisp and they differ in each
position;

he triangle inequality: dw(x, z) + dw(z, y) ≥ dw(x, y) holds only for
w ≥ 1/2, as now shown:

Theorem 2.4. 1. dw(x, z)+dw(z, y)−dw(x, y) = 2α+β +(2w−
1)ξ + 2wσ + wη

2. If w < 1/2 one has dw(x, z) + dw(z, y) − dw(x, y) ≥ −(1 −
2w)b(z),

3. Equality holds iff xi and yi are crisp and different in those posi-
tions i where z has a blank, while there is at least a coincidence
with zi in those positions i where zi is crisp.

4. If w ≥ 1/2 one has dw(x, z) + dw(z, y) − dw(x, y) ≥ 0.

5. If w = 1/2, equality holds iff in each position i either there
is a crisp coincidence involving zi, or xi and yi are crisp and
different, while zi is a blank. If w > 1/2, equality holds, as in
the case of d1, iff in each position i there is a crisp coincidence
involving zi.
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Proof. It will be enough to discuss conditions for equality, the rest
being an obvious corollary of theorems 1 and 2. If w < 1/2, to
have equality in the lower bound a necessary condition is clearly to
have equality in the lower bound of theorem 2.2; however, one must
further ensure σ = η = 0. Now, if zi is a blank, the fact that ξ holds
true implies that σ and η are both false, and nothing new is required;
if zi is crisp, unlike in theorem 2.2, xi and yi cannot be both blank,
because this would imply η > 0. If w > 1/2 nothing changes with
respect to theorem 2.3; instead, for w = 1/2, one can afford to have
ξ > 0 = σ = η.

Remark 2.5. In the case of dw with w ≥ 1/2, the axioms of a pseu-
dometric distance are violated only because one can have a positive
value for the “self-distance” dw(x, x). This drawback is mild indeed,
because a pseudometric can soon be obtained from dw by “forcing”
such self-distances to be zero; in practise any string x is forced to
belong to all of its neighbourhoods.

Remark 2.6. We shall say that z is between x and y when in each
position either xi ≤ zi ≤ yi or yi ≤ zi ≤ xi w.r. to the (unusual)
ordering 0 < ♭ < 1. It is well-known that the triangle inequality
for crisp Hamming distances is met with equality iff z is between x
and y; instead, this condition is only necessary in the case of dw with
w ≥ 1/2. For sufficiency one must add the requirement that z should
be crisp in the case of dw with w > 1/2; in the case of d1/2, one must
add the requirement that x, y should be crisp in those positions where
z has a blank. Incidentally, (cf theorems 2 and 3) if the triangle
inequality is met with equality for dw with w > 1/2, then a fortiori
it is met with equality for d1/2.

3. The variable-normalisation approach

Sometimes, rather than using the absolute Hamming distance, one
prefers to count the percentage of crisp differences: similarly, in [5]
the authors used a normalised variant of d0, by counting the per-
centage of crisp differences over those positions where both strings
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are ”sound” (are crisp):

δ(x, y) =
d0(x, y)

ℓ − b(x, y)

This distance is undefined whenever b(x, y) = ℓ, and so in the sequel
we will tacitly assume that the two strings in δ(x, y) have at least one
crisp position in common, a condition easily met in practise. To have
a distance which compares fairly to those in the previous sections,
one may de-normalise multiplying by ℓ, and so obtain ∆(x, y) =
ℓ δ(x, y) . A serious objection is that the contribution to δ or ∆ of a
crisp difference in position i between x and y, or between x and z, is
not the same unless b(x, y) and b(x, z) are equal. E.g. take x = 00,
y = 01, z = ♭1, where underbars denote runs of the same symbol
of length ℓ − 1. The two couples x, y and x, z crisply differ in just
one position, but δ(x, y) = 1/ℓ, while δ(x, z) is equal to 1, i.e. to its
upper bound.

Of course the triangle property is easily violated: just take z
with blanks in a sub-string where x and y are crisp and different.
E.g. take x = 00...0, z = 0♭...♭, y = 01...1. One has δ(x, z) = 0,
δ(z, y) = 0, δ(x, y) = ℓ−1

ℓ ≈ 1.

Even if mathematically rather weak, δ did perform quite well
in [5], an indication that one is dealing with stable linguistic struc-
tures which emerge even under moot classification criteria.

4. Metric properties on subspaces

While in the linguistic classifications of Muljačić [6] the fuzzy truth
value 1/2 was used in positions i where feature i was only weakly
or partially present, the situation is quite different in our case: here
it happens that there are strong logical dependencies between the ℓ
features, henceforth called structural dependencies, and one feature,
j say, might ”exist” only when another feature i has the binary
value 1, else it doesn’t make sense to talk about j. Such structural
dependencies are accounted for through blanks: if feature number j
is meaningless when feature number i has the value 0 rather than 1,
say, one puts a blank in position j (the crisp value of feature i implies
whether feature j does or does not make sense). Of course, one
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might have ”deeper” dependencies: there might be a further feature
u which makes sense only if feature j is equal to 1. An implication
is that certain ternary strings are ”structurally inadmissible”, say
string 010 or string 0♭1, assuming i = 1, j = 2, u = ℓ = 3 Now,
the basic piece of information derived from section 2 is that the
triangular properties falls for w < 1/2: since not all ternary strings
are structurally admissible, the hope is the the triangular property
might be recovered on relevant subspaces even if w < 1/2. The
bad news given by theorem 4.1 is that, even if one has only logical
dependencies of length at most one (a bold assumption thinking of
strings as used in [5]), the triangular property is soon lost.

Let us go back to dw; we now discuss a subspace of strings, which
is defined so as to cope with structural implication of the type just
hinted at, even if limited to depth one. Let P ⊂ {1, . . . , n} be a
(non-void) subset of positions, called henceforth strong, while the
remaining positions are called weak; blanks may occur only in weak
positions. Further, to each strong positions i we associate a set of
weak positions (possibly empty) φ(i), such as to have: the value of
the bit in position i determines whether the entries in positions φ(i)
are all blank or all crisp (each weak position is obtained by exactly
one strong position). Below, without real restriction, we shall assume
that the strong bit which implies blanks is always 0, while bit 1 in
position i implies that the corresponding φ(i) weak positions are all
crisp. For fixed φ let us consider the subspace S made up of all the
strings which verify the corresponding constraint. One has:

Theorem 4.1. Take w < 1/6; on the specified subspace S, the dis-
tance dw is triangular iff |φ(i)| ≤ 2 for all strong positions i. If
w < 1/2 there is an integer k∗ such that the triangular inequality
falls as soon as |φ(i)| ≥ k∗ for at least one strong position i.

Proof. For ℓ ≥ 4 and |φ(1) = k
.
= ℓ − 1|, the triangle inequality

is violated by the three strings x = 10, z = 0♭, y = 11 when
w < k−2

2k ; the latter number is equal to 1/6 for k = 3 and tends to
1/2 as k goes to infinity (an underbar denotes a k-length run of the
same symbol). This argument is enough to prove that the triangular
inequality falls in the situations specified by the theorem. Now, set
α = 0♭, β = 10, γ = 11 for ℓ = 2, and a = 0♭♭, b = 100, c = 101, d =
110, e = 111 for ℓ = 3; one verifies by a check that the triangle
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inequality always holds. For φ(i) ≤ 2, suppress weak positions and
write in the corresponding strong positions α, β, γ or a, b, c, d, e, as
the case may be. In practise, we code ℓ-strings over {0, 1, ♭} to
shorter strings of length ℓ −

∑

|φ(i)| over {0, 1, α, β, γ, a, b, c, d, e},
so as to keep (additive) distances (the sum is extended to all strong
positions i).

Remark 4.2. On S the metric implication dw(x, y) = 0 ⇒ x = y
holds true even for w = 0 by just assuming that there are weak
positions, so that S is strictly included in the space of all ternary
strings of length ℓ. Actually, if d0(x, y) = 0 and in position j ∈ φ(i)
there is a blank matched with a crisp bit, this gives no contribution to
the distance, but then in position i the two strings must have distinct
crisp bits, and so cannot coincide.

5. Triangles on real data: empirical results

To resume: for w < 1
2 the triangular property falls even on limited

subspaces, and so the use of standard clustering algorithms is at risk.
A further possibility remains open: that our real data verify (always
or at least mostly) the triangular property. We have checked the
24 natural languages classified in [5], which give rise to

(34
3

)

= 2024
distinct triangles; each of these might violate the triangle inequality
in up to three ways, according to which languages is chosen as the
“intermediate” one. We have counted triangles which are faulty in
the sense that the triangle inequality is violated in at least one way.

Let us begin by taking the variable-normalisation distance δ, or
equivalently ∆. The number of faulty triangles turns out to be 78,
i.e. ≈ 3.85%. If one takes instead the unnormalised distance d0 the
number of faulty triangles slightly decreases: one finds 73 of them,
which corresponds to ≈ 3.61%.

We have made a further check. As w increases one approaches
a situation when the triangle inequality does hold. Actually, there
is monotonicity, as soon proved: if dw(x, z) + dw(z, y) ≥ dw(x, y),
and v > w, then dv(x, z) + dv(z, y) ≥ dv(x, y). We have checked
w > 0 to see at which threshold faulty triangles disappear: it turns
out that for w = 0.16 there are no faulty triangles left over. For w =
0.15 a single faulty triangle survives, i.e. modern Greek, Romanian,
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Norwegian when one takes Romanian as the intermediate language.
In a way, it is “quicker” to move from Greek to Norwegian heading
off to Romanian, rather that taking the unconstrained direct way.

6. Future work: strings vs. trees

Robust linguistic structures should emerge under different (but rea-
sonable) classification criteria. Therefore it is interesting to take ad-
vantage of the fact that we have a family of distances dw, w ∈ [0, 1],
rather than a single distance d0, to see what changes as w spans
its range. One might introduce the parameter w also in the case of
variable-normalisations; in this case, however, one should presum-
ably think of a weighted normalisation of the type

δw(x, y) =
dw(x, y)

ℓ − (1 − w) b(x, y)
=

dw(x, y)

[ℓ − b(x, y)] + wb(x, y)

which would have δ and d1/ℓ at its extremes. Also, as sometimes
one does [8], one might think of forcing triangularity by “optimally
twisting” faulty triangles, a way-out which is tempting, since after
all their percentage is comparatively low.

Interesting insights on the data may also emerge by using dif-
ferent strategies for calculating inter-cluster distances. For instance,
the distance between two groups of languages can be computed by
taking the minimum of the pairwise distances among their elements
(single linkage clustering), or the maximum (complete linkage clus-
tering). Other strategies can use the median or the distance between
representatives of the clusters, like the mean or the median element
(i.e. the elements minimising respectively the mean or the median
distance within each group). In general, we expect that methods re-
lying on “average-like” aggregators should work better, as they tend
to smooth out the effect of “borderline” languages, which may un-
naturally inflate or deflate the distance between two clusters. For a
thorough review of clustering methods, see e.g. [4].

In the current approaches taken by linguists, features, be they
lexical as in [6], or syntactic as in [5], are always arranged in strings,
only ternary rather than binary. Dependencies are a problem, and
standard statistical methods for feature reduction appear to be of



HAMMING-LIKE DISTANCES etc. 117

dubious usefulness, since it is not clear why the choice of features
should by guided by statistics, let alone by multi-variate statistics for
normal samples. A promising step forward is turning to Q-matrices
(i.e., to infinitesimal generator matrices of Continuous Time Markov
Chains [7]), which have already been used with success in biological
contexts [3, 12]. Up to this point the string approach has been taken
for granted, but one may think of a bold change. In Section 4 features
have been implicitly set at different depths to take care of structural
dependencies, and so one might turn to trees rather than strings:
this would make depth differences quite explicit. In [1] distances
between trees are reviewed, which might be used in our case.

Fabio Rossi (1943-2005). We express our gratitude and our
friendship to Fabio Rossi, whose catching enthusiasm for mathemat-
ical research and mathematical teaching will remain with us for-
ever. In his last years Fabio turned to bio-mathematics and bio-
informatics and contributed to the launching of the International
Summer School BCI on Biology, Computation and Information,
which has now reached its 4th edition.
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