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Abstract. We study the limiting behaviour of stochastic models of pop-
ulations of interacting agents, as the number of agents goes to infinity.
Classical mean-field results have established that this limiting behaviour
is described by an ordinary differential equation (ODE) under two con-
ditions: (1) that the dynamics is smooth; and (2) that the population
is composed of a finite number of homogeneous sub-populations, each
containing a large number of agents. This paper reviews recent work
showing what happens if these conditions do not hold. In these cases, it
is still possible to exhibit a limiting regime at the price of replacing the
ODE by a more complex dynamical system. In the case of non-smooth
or uncertain dynamics, the limiting regime is given by a differential in-
clusion. In the case of multiple population scales, the ODE is replaced
by a stochastic hybrid automaton.

Keywords: Population models; Markov chain, Mean-field limits; Dif-
ferential inclusions; Hybrid systems.

1 Introduction

Many systems can be effectively described by stochastic population models, for
instance biological systems [51], epidemic spreading [1], queuing networks [41].
These systems are composed of a set of objects, agents, or entities interacting
together. Each individual agent is typically described in a simple way, as finite
state machines with few states. An agent changes state spontaneously or by inter-
acting with other agents in the system. All transitions happen probabilistically
and take a random time to be completed. By choosing exponentially distributed
times, the resulting stochastic process is a continuous-time Markov chain with a
finite state space. Many numerical techniques exist to compute probabilities of
such chains [3], and they are part of state-of-the art stochastic model checking
tools like PRISM [38] or MRMC [36].

These techniques, however, are limited in their applicability, as they suffer
from the state-space explosion: the state-space grows exponentially with the
number of agents and even simple agents, when present in large quantities, can
generate a huge state space which is far beyond the capabilities of current tools.



This results in the need for approximation techniques to estimate the proba-
bilities and the behaviours of the system. A classic way is to resort to stochastic
simulation, which scales better but is still a computationally intensive process
for large populations. Precisely in this regime of large populations, mean field
analysis offers a viable, often accurate, and much more efficient alternative. The
basic idea of mean field is that, when counting the number of agents that are in a
given state, the fluctuations due to stochasticity become negligible as the number
of agents N grows. For large N , the system becomes essentially deterministic.

A series of results, e.g., [4, 7, 37], have established that when the state space
of each agent is finite and the dynamics is sufficiently smooth, the system’s
behaviour converges asN goes to infinity to a limiting behaviour that is described
by system of ordinary differential equations (ODE). The dimension of this system
of ODE is equal to the number of states of the individual agents, but independent
of the population size N . The dimension of the differential equation is typically
small, hence the numerical integration of these equations is extremely fast. These
results show that the intensity of the fluctuations goes to zero as 1/

√
N . This

approach is used in many domains, including computer-based systems [29, 31,
43, 50], epidemic or rumour propagation [17, 34] or bike-sharing systems [24].
Is it also used to construct approximate solutions of stochastic model checking
problems [10, 12, 13, 11].

However, these limiting results have two main shortcomings. First, these
models cannot deal with discontinuities on the rates of interaction between
agents, or uncertainty in model parameters in an obvious way. Second, being
able to approximate the number of agents by a continuous variable requires all
populations to be large. These limitations are essentially due to restricting the
attention to a limiting regime that can be expressed in terms of smooth ODEs.

In this document, we show that by enlarging the set of possible limiting
regimes, it is possible to extend the classical framework in multiple directions.
We first begin in Section 2 by a concise introduction to classical mean field
models and their ODE limits. This section requires basic knowledge of CTMCs
and ODEs. We then show in Section 3 how discontinuities and uncertainties can
be treated uniformly and consistently considering mean field limits in terms of
differential inclusions. We then tackle the presence of multiple population scales
in Section 4. We show that when the number of agents in some populations go
to infinity while others remain finite, the mean field limit is naturally expressed
as a stochastic hybrid automaton, where continuous-deterministic and discrete-
stochastic dynamics coexist and modulate each other. Last, we mention other
related work and extensions of this framework, for instance to cooperative games,
in Section 5.

2 The classical mean field framework

In this section, we will introduce the fundamental mean field approximation. We
assume the reader familiar with basic concepts of Markov Chains in Continu-



ous Time, see e.g. [44, 23] for an introduction, and with ordinary differential
equations.

We start in Section 2.1 by introducing a framework to describe the class of
systems amenable of mean field analysis, namely Markov population processes
(see also the chapter on spatial representations [26]). We illustrate these concepts
in Section 2.2 by means of a classic epidemic spreading model. In Section 2.3,
we describe the basic mean-field theorems.

2.1 Population Continuous-Time Markov Chains

Population continuous-time Markov chains (PCTMCs) describe a set of inter-
acting agents, which can have different internal states. Interactions involve a
small number of agents, and can happen randomly in time, according to an ex-
ponential distribution with system-dependent rate. We describe these systems
in terms of counting variables and transition classes, following the conventions
of [7, 33].

More specifically, a PCTMC M model is a tuple (X, T ,x0, N), where

– X = (Xs)s∈S ∈ R|S| is the population vector. The state space of an agent is
S and Xs ∈ N counts the number of agents in state s ∈ S. The state space
of the model is a finite or countable subset of R|S|.

– T is the set of transition classes, each of the form η = (φη(X),vη, fη(X)),
where

• φη(X) ∈ {0, 1} is a guard predicate, representing a subset of S in which
the transition is active;

• v ∈ Rn is an update vector, encoding the relative change of X induced
by the firing of the transition η: the new state will be X + vη;

• fη(X) is the rate function, giving the rate at which an η transition is
fired as a function of the state space of the system. Typically, fη(X) is
a (locally) Lipschitz continuous function of the population variables.

– x0 ∈ R|S| is the initial state of the system.

– N is the population size.

Each PCTMC model M defines a CTMC X(t) on the state space S. This
chain is characterised by the inifinitesimal generator matrix Q [23], whose off-
diagonal entries are given by

Qx1,x2 =
∑

η∈T s.t. x2=x1+vη

φη(x1)fη(x1).

An important concept related to population models is the system size, N .
Typically, system size is the total (initial) population. In some domains, though,
like biochemical networks or ecological models,N may represent another measure
of size, like the volume or the area in which the dynamics described by a PCTMC
happens. We refer to [7] for a deeper discussion of this.



2.2 Example: SIR epidemic spreading

As a simple and illustrative example, we consider the spreading of a disease in a
community of N agents (which can be humans, animals, computers). The state
space of an agent is S = {S, I,R}. This model is one of the classical examples
of a Markov population process and is referred to as the SIR model.

The contagion happens when a susceptible agent (XS) enters in contact with
another agent who turns out to be infected (at rate ksiXSXI/N) or enters in
contact with an external source of the disease (at rate kiS). Infected individuals
spontaneously recover at rate kr, and become Recovered (XR) and immune from
the disease. This immunity, however, can be lost with rate ks.

Formally, the model can be described as a PCTMC with three variables
(XS , XI , XR), each taking values in the integers {0, . . . , N}, as no birth or death
events are considered. The model has four transition classes, all having a guard
predicate evaluating to true (= 1) in all states :

– Internal infection: (true, eI − eS , ksiXSXI/N);
– External infection: (true, eI − eS , kiXS);
– Recovery: (true, eR − eI , krXI);
– Immunity loss: (true, eS − eR, ksXR);

2.3 Classic mean field equations

mean field theory answers the following question about population models: what
happens when the population is very large? More specifically, it can be shown
that, for a large class of models, the dynamics of the system greatly simplifies
as the system size goes to infinity. The classic theorem, dating back to the 1970s
[37], shows that trajectories of suitably rescaled processes for large populations
look deterministic, and in fact converge to the solution of an ordinary differential
equation (ODE).

An important operation in the path to mean field is to normalise population
processes, dividing variables by the system size, and updating accordingly the
transitions. This allows one to compare different models, as they will now have
the same scale, intuitively these are population densities. Roughly, the determin-
istic behaviour appears because fluctuations around the mean of a population
process grow as

√
N , hence while normalising, i.e. dividing by N variables, fluc-

tuations will be of magnitude 1/
√
N , and will thus go to zero.

More formally, consider a population modelMN , where we make explicit the
dependence on the system size, and define its normalised version M̂N as follows:

– Population variables (and initial conditions) are rescaled by N : X̂N = X/N ;
– Transition rates and guard predicates are expressed in the normalised vari-

ables, by substituting NX̂N for X in the functions: f̂N (X̂N ) = f(NX̂) and

φ̂N (X̂N ) = φ(NX̂);
– Update vectors are rescaled by N , too: v̂N = v/N ;

The CTMC associated with the normalised model will be denoted by X̂N (t).



Example. Consider the SIR model of Section 2.2. Its normalised version, for a
population of N agents, has the following four transition classes:

– Internal infection: v̂si
N = (eI − eS)/N , f̂Nsi (X̂) = NksiX̂SX̂I ;

– External infection: v̂i
N = (eI − eS)/N , f̂Ni (X̂) = NkiX̂S ;

– Recovery: v̂r
N = (eR − eI)/N , f̂Nr (X̂) = NkrX̂I ;

– Immunity loss: v̂s
N = (eS − eR)/N , f̂Ns (X̂) = NksX̂R.

As we can see, all transition rates depend linearly on system size. When this hap-
pens, rates are called density dependent [7], a condition that usually guarantees
the applicability of the mean field results.

Drift. The main quantity required to define mean field equations is the drift.
The drift is the average direction of change of the population model, conditional
on being in a certain state at some time t. The drift of the normalised model is

F (x) =
∑
η∈T

φ̂η(x)f̂η(x)v̂η, (1)

Usually, mean field is defined under some additional restrictions on the popula-
tion model:

(C1) Guards are true for any x ∈ S, hence the indicator function can be safely

removed from the drift: FN (x) =
∑
η∈T f̂

N
η (x)v̂Nη .

(C2) F is a Lipschitz continuous function.

Note that by definition of the rescaled model, the drift F (x) does not depend
on N , because the update vectors are rescaled by 1/N while the transition rates
are rescaled by N . When the drift FN (x) does depend on N , condition (C2) can
be replaced in all theorems by a condition (C2’): FN (x) converges uniformly as
N →∞ to a Lipschitz continuous function F (x).

Note that in the SIR model, Conditions (C1) and (C2) are satisfied. For the
second one, in particular, we can see that by multiplying a normalised update
vector, e.g. v̂i

N , by the corresponding rate, e.g. f̂Ni (X̂) = NkiX̂SX̂I , the de-
pendency on system size cancels out, so that the drift FN (x) is independent of
N . Lipschitz continuity3 is easily proved. See [7] for a deeper discussion of these
conditions. In the following, we will discuss how to weaken these assumptions.

The following theorem can then be proved (see [4, 7, 20]):

Theorem 1. Assume the above conditions C1 and C2 hold and that X̂0 con-
verges to x0 almost surely (resp. in probability) as N goes to infinity. Let x be
the solution of the ODE:

d

dt
x(t) = F (x(t)) x(0) = x0. (2)

Then, for any T > 0,

lim
N→∞

sup
t≤T
‖X̂N (t)− x(t)‖ = 0 almost surely (resp. in probability).

3 In fact, Lipschitz continuity is satisfied only locally, but this enough for mean field
convergence to work.



The theorem essentially states that trajectories of the PCTMC, for large N ,
will be indistinguishable from the solution of the mean field ODE restricting to
any finite time horizon T > 0. This can be seen as a functional version of the law
of large numbers. An example of the theorem at work, for the SIR model, can
be seen in Figure 1. For the SIR model, the mean field approximation is given
by the following system of ODEs:

ẋS = −kixS − ksixSxI + ksxR

ẋI = kixS + ksixSxI − krxI (3)

ẋR = krxI − ksxR

We simulate the model for population size of N = 10, N = 100 and N = 1000
agents and report the evolution of the numbers of susceptible or infected agents
as a function of time. The parameters are ki = ksi = ks = kr = 1 and the initial
conditions are XI(0) = XS(0) = 2XR(0) = 2N/5. Each plot contains three
curves: a sample path of one simulation, the mean field (ODE) approximation
and an average over 104 simulations.

This figure illustrates how large the population size N has to be for the
approximation to be accurate. We observe that the mean field approximation
describes correctly the overall dynamics of the PCTMC for N = 100 and N =
1000. In fact, it can be shown that the rate of convergence in Theorem 1 is of
the order of 1/

√
N [20, 4] but with bounds that often an underestimation of

the real convergence speed. In practice, we often observe that the convergence is
quicker than this bound. This is particularly true when one considers the average
stochastic value: E [X(t)]. To illustrate this fact, we simulated the SIR model 104

times to compute the values E [X(t)]. We report the evolution of E [XS(t)] and
E [XI(t)] with time in Figure 1. We observe than, already for N = 10, the
ODE x(t) is extremely close to the value of E [x(t)] computed by simulation. For
N = 100 and N = 1000, the curves are indistinguishable.

Notice that in Theorem 1, the restriction to finite time horizons is funda-
mental, as convergence at steady state does not necessarily hold. An exam-
ple is given by the SIR model when ki = 0, ksi = 3, ks = kr = 1 and
xR(0) = xS(0) = xI(0) = 1/3. This initial condition is a fixed point of the mean
field ODE which therefore predicts an endemic equilibrium. In the PCTMC
model, however, for any N , the epidemic always extinguishes (i.e. eventually
XI(t) = 0) because there is no external infection in this situation. For a deeper
discussion of this issue, see the next section as well as [7].

In fact, steady state results can be obtained at the price of adding two addi-
tional conditions:

(C3) For any N , the PCTMC has a steady-state distribution πN . The sequence
of distributions πN is tight.4

(C4) The ODE (2) has a unique fixed point x∗ to which all trajectories converge.

4 A sequence of distributions is πN tight if their probability does not escape to infinity,
i.e. for each ε there is a compact set K such that πN (K) ≥ 1− ε for each N .
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Fig. 1. Simulation of the SIR model: comparison between ODE and simulation for
various values of N . We observe that the simulation converges to the ODE as N goes
to infinity. Moreover, even for N = 10, the average simulation is very close to the ODE.

The condition C3 is a natural condition that is in general true for PCTMC
models. For example, if the population CTMC of size N has a finite number of
states, it has a steady-state distribution. Moreover, the tightness of the measure
is true if X is almost surely bounded.

However, condition C4 is a condition that is often difficult to check for a given
set of ODEs. Proving it requires to exhibit a Lyapunov function witnessing global
attractiveness of the unique equilibrium point.

Theorem 2. Assume that the above conditions C1, C2, C3 and C4 hold. Then,
πN converges weakly to the Dirac measure x∗.

Similarly to Theorem 1, it can be shown that under mild additional condi-
tions, the speed of convergence of the steady-state distribution πN to x∗ is also



1/
√
N . For example, it is shown in [53] that this holds when x∗ is exponentially

stable, in which case we have√
E
[
‖XN (∞)− x∗‖2

]
= O(1/

√
N),

where XN (∞) denotes a random point distributed according to the stationary
measure πN .

3 Non-continuous dynamics and uncertainties

The classical mean field models make the assumption that the drift F , given by
(1), is Lipschitz-continuous. Yet, this is not the case in many practical problems.
For example, this occurs when a transition η has a guard predicate φη that is
true only in a sub-part of the domain. This causes a discontinuity in the drift
between the two regions where the predicate is true or false. In this case, the
ODE ẋ = F (x) is often not well-defined. A classical way of overcoming this
difficulty is to replace the ODE by a differential inclusion ẋ ∈ F (x).

In this section, we give some general discussion of differential inclusions. We
then show how the classical mean field results can be generalised to differential
inclusion dynamics in the case of discontinuous dynamics. Last, we show in
Section 3.3 how this framework can be used to deal with uncertainties in the
parameters. This section collects results from [6, 28].

3.1 The differential inclusion limit

Let M = (X, T ,x0, N) be a population model as defined in Section 2.1. Each
transition class has the form η = (φ(X),vη, fη(X)). Recall that the drift of the
stochastic system, defined in Equation (1), is

F (x) =
∑
η∈T

φ̂η(x)f̂η(x)v̂η, (4)

The classical mean field results presented in the previous section (Theorems 1
and 2) apply when the guard predicates φη always evaluate to true. This condi-
tion guarantees that, if the functions fη are Lipschitz continuous, the function
F is also Lipschitz continuous. This ensures that the ODE ẋ = F (x) is well-
defined: from any initial condition, it has a unique solution. However, this no
longer holds when guard predicates can take the two values true and false. In
this case, the drift F is not continuous and Theorems 1 and 2 no longer apply.

One of the reasons for the inapplicability of those theorems is that when F
is not a Lipschitz-continuous function, the ODE ẋ = F (x) does not necessarily
have a solution. For example, let F : R → R be defined by F (x) = −1 if x ≥ 0
and F (x) = 1 if x < 0. The ODE ẋ = F (x) starting in 0 has no solution. A
natural way to overcome this limitation is to use differential inclusions.



Let G be a multivalued map, that associates to each x ∈ RS a set G(x) ⊂ RS .
A trajectory x is said to be a solution of the differential inclusion ẋ ∈ G(x)
starting in x0 if:

x(t) = x0 +

∫ t

0

g(s)ds, where for all s: g(s) ∈ G(x(s)).

The sufficient condition for the existence of at least one solution x : [0,∞)→
Rd of a differential inclusion from any initial condition x0 is the following (see
[2]):

(C5) For all x ∈ Rd, G(x) is closed, convex and non-empty; supx∈Rd |G(x)| < ∞
and G is upper-hemicontinuous.5

Theorem 3 ([28]). Let M = (XN , T ,x0, N) be a population model with drift
F such that there exists a function G satisfying (C5) such that for all x ∈ Rd:
F (x) ∈ G(x). Let S be the set of solutions of the differential inclusion ẋ ∈ G(x)
starting in x0. Then, for all T , almost surely

lim
N→∞

inf
x∈Sx0

sup
t∈[0,T ]

∥∥XN (t)− x(t)
∥∥ = 0.

In other words, as N grows, the distance between the stochastic process X and
the set of solutions of the differential inclusion goes to 0. If this set has a unique
solution, then XN converges to this solution.

Theorem 3 is a generalisation of Theorem 1 that relaxes the condition (C1)
by using a larger drift function G. We will see in the next section a natural way
to choose G when the drift is not continuous. The price to be paid by this gen-
eralisation is composed of two drawbacks. First, differential inclusions can have
multiple solutions. Theorem 3 implies that XN gets closer to the solutions of the
differential inclusion but does not indicate towards which solutions the process
will converge. Second, the speed of convergence of XN to S is unknown, apart
in the special case of one-sided Lipschitz drift, for which the distance between
XN and S decays in 1/

√
N (see [28]). In general, the convergence appears to be

slower in the case of non-continuous dynamics (see Figure 2).

The steady-state of a non-continuous PCTMC can also be approximated by
using the same approximation. In fact, the results of Theorem 2 can also be
directly generalised to the case of non-continuous dynamics: if the differential
inclusion has a unique point x∗ to which all trajectories converge, then the
steady-state distribution of XN concentrates on x∗ as N goes to infinity (see [6,
28]).

5 G is upper-hemicontinuous if for all x, y ∈ Rd, xn ∈ Rd, yn ∈ F (xn), limn→∞ xn = x
and limn→∞ yn = y, then y ∈ F (x).



3.2 Application to discontinuous dynamics

A natural way to define a multivalued map that satisfies (C5) is to consider the
multivalued map F̄ , defined by

F̄ (x) =
⋂
ε>0

convex hull

 ⋃
x′:‖x−x′‖≤ε

F (x′)

 . (5)

It is shown in [28] that if F is bounded, then F̄ satisfies (C5). By Theorem 3, this
implies that, regardless of the properties of the original drift F , the trajectories
of the stochastic system XN converge to the solution of the differential inclusion
ẋ ∈ F̄ (x).

When F is continuous at a point x ∈ Rd, the F̄ (x) = F (x). When F is not
continuous in x ∈ Rd, F̄ (x) is multivalued. To give a concrete example, let us
consider the SIR model of Section (2.2) in which we add an additional transition
corresponding to the treatment of some infected people. This treatment is applied
when the proportion of infected people is greater than 0.3 and changes an infected
person into a susceptible individual at rate kt. This corresponds to a transition
class:

– Treatment: η = (1XI≥0.3, eS − eI , ktXI)

Adding this transition to the original ODE (3), the drift is given by

F (x) =

−kixS − ksixSxI + ksxR + kt1xI≥0.3xI
kixS + ksixSxI − krxI − kt1xI≥0.3xI

krxI − ksxR

 , (6)

where the guard predicate leads to the term 1xI≥0.3.
This drift is not continuous in x. In fact, it can be shown that because of this

discontinuity, the corresponding ODE has no solution on [0,∞) starting from
x0 = (.4, .4, .2). The corresponding F̄ defined by Equation (5) is then given by

F̄ (x) =

−kixS − ksixSxI + ksxR + kt1xI>0.3xI + kt[0, xI ]1xI=0.3

kixS + ksixSxI − krxI − kt1xI>0.3xI − kt1xI=0.3[0, xI ]
krxI − ksxR

 ,

where the notation a+ [b, c] denotes the set [a+ b, a+ c].
It can be shown that the differential inclusion ẋ ∈ F̄ (x) has a unique solution,

x. Hence, Theorem 3 applies to show that XN converges to x as N goes to
infinity. To illustrate this fact, we simulated the modified SIR model with the
treatment policy and report the results in Figure 2. We observe that, as stated by
Theorem 3, XN converges to x as N goes to infinity. In this case, the convergence
appears to be slower than for the Lipschitz-continuous case. This is especially
visible when looking at the average values E [XS ] and E [XI ]: in Figure 1, we
observe that for the Lipschitz-continuous case, E [XS ] is almost equal to xs
already for N = 10. In the non-continuous case, Figure 2 indicates that E [XI ]
does converge to xI but at a much slower rate.
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Fig. 2. Simulation of the SIR model: comparison between differential inclusions and
simulation for various values of N . We observe that the simulation converges to the
solution of the differential inclusion as N goes to infinity. Moreover, even for N = 10,
the average simulation is very close to the solution of the differential inclusion.

3.3 Imprecise and uncertain models

Stochastic models are one way of representing uncertainties in a system but
they depend on parameters whose precise values are not always known. The
differential inclusion framework is also well adapted to study models with im-
precise or unknown parameters. Following [6], we distinguish two ways to model
uncertainties in models of complex systems:

– Imprecise scenario: Some parameters ϑ can depend on features of the
environment external to the model. We fix a set Θ of possible values for ϑ
and assume that ϑ depends on time t and can take any value of Θ at any
time instant, i.e. that ϑt ∈ Θ.

– Uncertain scenario: In a simpler scenario, a parameter ϑ is assumed fixed,
but its precise value not known precisely. In this case, we just assume that
ϑ ∈ Θ, where Θ is the possible set of values of ϑ, as above.



An imprecise or uncertain PCTMC model is a tuple (X, T , x0, Θ,N), where Θ
is a set of parameters. The difference with classical PCTMC is that the rate
function fη(X, θ) of each transition class η ∈ T depends on a parameter θ ∈ Θ.

The differential inclusion framework can be used to study the limits of im-
precise and uncertain PCTMC. For the uncertain scenario, there is a differen-
tial inclusion ẋ ∈ F (x, ϑ) associated with each parameter ϑ. Denoting by Sϑ
the set of solutions of this differential inclusion, Theorem 3 shows that, as N
goes to infinity, any sequence of uncertain trajectories XN converges to the set
Suncertain =

⋃
ϑ∈Θ Sϑ. The differential inclusion corresponding to the imprecise

scenario is ẋ ∈
⋃
ϑ∈Θ F (x, ϑ). Denoting by Simprecise the set of solutions of this

differential inclusion, Theorem 3 shows that, as N goes to infinity, any imprecise
trajectory XN converges to Simprecise.

Some numerical methods are developed in [6] to compute or approximate the
set of solutions of differential inclusions corresponding to the imprecise and the
uncertain model. In particular, we obtain the most precise results by describing
the set of reachable values of x at time t as a maximisation problem. Then
Pontryagin’s maximum principle [46] can be used to numerically compute the
solution.

4 Hybrid mean field limits

In the previous sections, we considered scenarios where all populations of the
model are large and grow with the system size. This allows one to prove that their
density has vanishing fluctuations around the mean, given by the solution of the
mean field equation. However, in many practical cases, there may be multiple
population scales in a model, typically in the form of some entities being present
in small numbers, independent of the total population size. Examples can be
found in genetic regulatory networks, where genes are present in a fixed quantity,
typically one or few copies, or more generally in the presence of a centralised
form of control [8]. This suggest that in these scenarios we need to consider mean
field models in which the continuous and deterministic limit dynamics of parts
of the system coexists with the discrete and stochastic dynamics of other parts.
Mathematically, this behaviour is captured by stochastic hybrid systems (SHS)
[8, 21], which will be introduced in the next subsection.

4.1 Stochastic Hybrid Systems

We introduce a model of SHS, essentially borrowing from the treatment of [8,
15] of a class of stochastic hybrid processes known as Piecewise-Deterministic
Markov Processes (PDMP) [21].

We consider two sets of variables, the discrete variables Z = Z1, . . . , Zk
and the continuous variables Y = Y1, . . . , Ym. The former describes populations
that remain discrete also in the mean-field limit, while the second describes
populations that will be approximated as continuous. We call E = Ed × Ec the
hybrid state space of the SHS, with Ed ⊂ Nk a countable set of possible values



for Z, and with Ec ⊂ Rm the continuous state space in which variables Y can
take values. Each possible value that the vector Z can take is called a discrete
mode, and can be identified with a node in a graph describing the transitions of
the discrete states. This graph-based point of view is taken in the definition of
stochastic hybrid automata, see e.g. [15].

The evolution of the continuous state is governed by an m-dimensional vector
field F (Z,Y), depending on the continuous and the discrete variables. Hence, the
continuous variables will evolve following the solution of the differential equation
defined by F , which can be different in each discrete mode z. Such a mode-specific
continuous dynamics is one of the characteristic features of SHS.

The dynamics of the discrete state is governed by a stochastic Markovian
dynamics, specified by two quantities: a rate function λ(Z,Y), depending both
on discrete and continuous variables, and a jump or reset kernel R(Z,Y, ·),
specifying for each Z,Y a distribution on E, giving the state in which the system
will find itself after a jump of the discrete transition. For the purpose of this
chapter, we can restrict ourselves to finitely supported reset kernels, defined by
a finite set of pairs of update vectors {(vdj ,vcj) | j = 1, . . . , h} and associated
probability functions pj(Z,Y), giving the likelihood of jumping from state Z,Y
to state Z + vdj ,Y + vcj , if a stochastic event fires when the system is in state
Z,Y. This, in turn, happens after an exponentially distributed delay with rate
λ(Z,Y).

Discrete and continuous dynamics in a SHS are intertwined. The system
starts in a given state z0,y0, and its continuous state evolves following the solu-
tion of the initial value problem d

dtY(t) = F (z0,Y(t)), Y(0) = y0. This continu-
ous flow will go on until a discrete event will happen, at a random time governed
by an exponential distribution with rate λ(Z,Y(t)). Note that, as Y will change
value in time following the flow of the vector field, the rate of a discrete jump is
also time-dependent. When a discrete transition happens, say in state z,y, then
the system will jump to the state z + vdj ,y + vcj with probability pj(Z,Y). Note
that both the discrete mode and the value of continuous variables can change.
From this new state, the system continues to evolve following the dynamics given
by the vector field in the new discrete mode. The overall dynamics is given by
an alternation of periods of continuous evolution interleaved by discrete jumps.
For a proper mathematical formalisation of this process, we refer the interested
reader to [8, 21].

4.2 From PCTMC to SHS

In this section we will show how to construct a SHS from a PCTMC (X, T ,x0, N),
and how to guarantee the asymptotic correctness of the method. The starting
point is a partition of the variables X of the PCTMC into two distinct classes:
discrete and continuous. We will denote discrete variables with Z and continu-
ous ones with Y, so that X = Z,Y. Transitions T also have to be separated
in two classes: discrete Td and continuous Tc. Intuitively, continuous transitions
and variables will define the continuous dynamics, and discrete transitions and
variables the discrete one. The only request is that continuous transitions do not



affect discrete variables, i.e. for each η ∈ Tc, vη[Z] = 0, where vη[Z] denotes the
vector vη restricted to the components of Z.

Remark 1. The choice of how to partition variables and transitions into discrete
and continuous is not obvious, and depends on the model under consideration.
Often, this is easily deduced from model structure, e.g. due to the presence of
conservation laws with a small number of conserved agents. A further help comes
from the request to make explicit in the rates and updates the dependency on
system size N . An alternative is to define rules to automatically switch between
a discrete or a continuous representation of variables and transitions, depending
on the current state of the model. We refer the interested reader to the discussion
in [8] for further details.

Normalisation of continuous variables. To properly formalise hybrid mean-field
limits, we need to perform a normalisation operation on the continuous vari-
ables, taking system size into account (hence we will use the superscript N from
now on). This can be obtained as in Section 2.3, by introducing the normalised

variables ŶN = Y/N , and expressing rates, guards, and update vectors with
respect to these normalised variables. Note that normalised update vectors v̂Nη
are divided by N only in the continuous components, as the discrete variables
are not rescaled. Transitions, after normalisation, have to satisfy some scaling
conditions:

(Tc) Continuous transitions η ∈ Tc are such that f̂Nη (Z, Ŷ)/N → fη(Z, Ŷ), as

N → ∞, uniformly on Ŷ for each Z. The limit function is required to be
(locally) Lipschitz continuous. Furthermore, their non-normalised update is
independent ofN . Guards can depend only on discrete variables: φη = φη(Z).

(Td) Discrete transitions η ∈ Td are such that their rate function f̂Nη (Z, Ŷ) con-

verges (uniformly in Ŷ for each Z) to a continuous function fη(Z, Ŷ). Their
normalised jump vector v̂Nη has also to converge to a vector v̂η as N diverges.
Guards can depend only on discrete variables: φη = φη(Z).

Note that, for discrete transitions, we consider the change in the normalised
continuous variables, and we admit that the update vectors can depend on N . In
particular, the update for continuous variables can be linear in N , thus resulting
in a non-vanishing jump in the density, in the large N limit. This means that
limit discrete transitions may also induce jumps on continuous variables.

Construction of the limit SHS. Given a family of PCTMC models (X, T ,x0, N),
indexed by N , with a partition of variables into Z,Y and transitions into Tc, Td
we can normalise continuous variables and formally define the SHS associated
with it:

– The vector field defining the continuous dynamics of the SHS is given by the
following drift:

F (Z, Ŷ) =
∑
η∈Tc

vηI{φη(Z)}fη(Z, Ŷ)



– The jump rate of the SHS is given by

λ(Z, Ŷ) =
∑
η∈Td

I{φη(Z)}fη(Z, Ŷ)

– The reset kernel is specified by the pair of update vectors (v̂η[Z], v̂η[Ŷ]) and
by the probability

pη(Z, Ŷ) =
I{φη(Z)}fη(Z, Ŷ)

λ(Z, Ŷ)
,

for each transition η ∈ Td.
– The initial state is z0, ŷ0.

SIR model with vaccination. We consider now an extension of the SIR model of
Section 2.2, with the possibility of starting a vaccination campaign of susceptible
individuals. The model has an additional variable, XV ∈ {0, 1}, which is going
to be the only discrete variable of the system and encodes if the vaccination is
in force or not. We further have two additional transitions:

– Vaccination of susceptible: (true, eR − eS , kvXSXV );
– Activation of the vaccination policy: (XV = 0, eV , kaXI/N);

The first transition, which will be a continuous transition, models the effect of
vaccination, moving agents from susceptible to recovered state. Note that the
rate depends on XV , hence the transition is in force only if XV = 1. We could
alternatively specify the same behaviour by introducing a guard in the transition,
depending only on discrete variables, which would result in a rate active only
in a subset of discrete modes. The second transition will be kept discrete and
model the activation of the vaccination policy. Its rate depends on the density
of infected individuals (the higher the infected, the higher the activation rate).
The guard on XV allows the activation transition to be in force only when the
vaccination is inactive.

In Figure 3 (left), we show a trajectory of the system for N = 100, and
compare it with a trajectory of the limit SHS. Parameters are ksi = 0, ki = 1,
kr = 0.1, ks = 0.01, kv = 2, ka = 2, XS(0) = 0.95N , XI(0) = 0.05N , XR(0) = 0.
As we can see, around time t = 2.5 there is a sudden drop on the number of
susceptible individuals, caused by the beginning of vaccination. The similarity
between the PCTMC and the SHS trajectories is a clear hint on the existence
of an underlying convergence result.

Mean-field convergence results. Consider a family of PCTMC model (X, T ,x0, N),

and denote by (ZN (t), ŶN (t)) the normalised CTMC associated with it, for size
N , where we made explicit the partition of variables into discrete and continu-
ous. Denote by (z(t),y(t)) the limit SHS, constructed according to the recipe of
this section. We can then prove [8] the following theorem:



Theorem 4. Assume (zN0 , ŷ
N
0 )→ (z0,y0) and that the transitions of the PCTMC

model satisfy conditions (Tc) and (Td). Then

(ZN (t), ŶN (t))⇒ (z(t),y(t)),

for all times t ≥ 0, where ⇒ denotes weak convergence.6

This theorem states that the distribution of the PCTMC will look like the dis-
tribution of the SHS for large N . In particular, if Ed is finite (i.e. there is a
finite number of discrete modes) and Ec is compact, then all conditional and
unconditional moments of the distribution converge.

In Figure 3 (right), we see the theorem at work in the epidemic with vac-
cination example. The figure compares the empirical cumulative distribution of
the density of infected individuals at time t = 10. The curves look quite similar
already for N = 100, and are almost identical for N = 1000.
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Fig. 3. Left: comparison of a simulated trajectory of the PCTMC model, for N =
100, with a simulated trajectory of the limit SHS. Right: comparison of the empirical
cumulative distribution of X̂I at time t = 10 of the limit SHS and the PCTMC models
for N = 100 and N = 1000.

4.3 Extensions of the hybrid limit framework

The hybrid mean field limit presented in the previous section can be extended
in many ways, as discussed in [8]. Here we will sketch them briefly, referring the
interested reader to [8] for further details.

One possible direction to enrich the framework is to consider forced transi-
tions. In the context of SHS, these are discrete jumps happening as soon as a
condition on the system variables becomes true. Typically, they are introduced
by constraining the continuous state space Ec (in a mode dependent way), and
forcing a jump to happen as soon as the trajectory of the continuous variables
hits the boundary ∂Ec [21]. Then a jump is done according to the reset kernel

6 In fact, weak convergence holds for (z,y) as processes in the Skorokhod space of
cadlag functions, see [8]. For a definition of weak convergence, see [5].



R, whose definition has to be extended on the boundary ∂Ec. Hence, discrete
jumps may happen at stochastic times, or when the condition for a forced jump
is met.

In the PCTMC setting, introducing forced transitions requires us to allow
transitions with an infinite rate and with a non-trivial guard, firing as soon
as their guard becomes true. Their guards, then, can be used to constrain the
continuous state space. Hence, Ec will be defined in each mode as the interior
of the complement of the region obtained by taking the union of the satisfaction
sets of all the guards of forced transitions. The reset kernel in a point of the
boundary ∂Ec will then be defined by the active immediate transitions at that
point, choosing uniformly among the active transitions.7

As an example, consider again the SIR model with vaccination, but assume
its activation and deactivation is threshold-based: when the density of infected
becomes greater than a threshold Ihigh, the vaccination is started, while if it falls
below Ilow, the vaccination is stopped. In the PCTMC model, we would have
the following two transitions in place of the stochastic one discussed previously:

– Activation of the vaccination policy: (XI ≥ NIhigh, eV ,∞);
– Deactivation of the vaccination policy: (XI ≤ NIlow,−eV ,∞).

Theorem 4 is readily extended to the presence of instantaneous transitions, un-
der some additional technical conditions on the vector fields (called transversal
crossing), see [8] for details. The validity of the result for the SIR model with vac-
cination is illustrated in Figure 4, where we compare simulations of the PCTMC
model and the limit SHS, for thresholds Ihigh = 0.3 and Ilow = 0.2.
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Fig. 4. Left: comparison of a simulated trajectory of the PCTMC model with instan-
taneous transitions (normalised variables), for N = 100 (left) and N = 1000 (right),
with a simulated trajectory of the limit SHS.

Other extensions of the hybrid mean field include dealing with guards in
deterministic and stochastic transitions. These introduce discontinuities in the
7 In [8], weights are introduced to solve non-determinism between instantaneous tran-

sitions. Furthermore, the possibility of seeing a chain of instantaneous events firing is
taken into account. Termination of this chain is discussed in [15] (where it is proved
undecidable for countable state spaces), and in [27], where sufficient and testable
conditions for termination are given.



model, and require further technical conditions for the limit theorems to hold.
As for guards in the continuous transitions, this in fact requires one to introduce
in the hybrid context the mean field techniques based on differential inclusions
of Section 3.

5 Related work and examples

Load balancing and discontinuous dynamics. The use of mean field approxi-
mation is popular for studying load-balancing policies in server farms. In such a
system, an object represents a server and its state is typically the number of jobs
that are waiting in its queue. A popular randomised load balancing policy is the
two-choice policy: for each incoming packet two servers are picked at random
and the job is allocated to the least-loaded of the two. This policy has been
successfully analysed by classical mean field techniques in [43] where it is shown
that it leads to an important gain of performance compared to a purely random
allocation. The classical approach then fails when one considers a centralised
load balancing policy such as join the shortest queue because these policies lead
to discontinuous dynamics. As demonstrated in [28, 49, 24], these problems can
be modelled and resolved by using differential inclusions.

Heterogeneous systems and uncertainties. Another problem where differential
inclusions can help is the case of heterogeneous systems. In such cases, there is
a large number of objects each having distinct parameters. One example is the
caching model of [31] in which an object i has a popularity pi. One possibility to
solve the problem is to consider a system of N×S ODEs, where N is the number
of objects and S the dimension of the state space. This method scales linearly
in the number of objects but might still be problematic for large populations.
An alternative is to consider upper and lower bounds on the dynamics [48] or to
study a PDE approximation when the number of objects is large, see for example
[25].

Hybrid mean field limits. The use of hybrid approximation of population mod-
els is quite common in the area of systems and synthetic biology, where genes
and often mRNA molecules are present in such low numbers (genes usually in
one copy) that classic mean field assumptions are not correct and can lead to
models failing to capture important features of the system like bursting protein
expression [39]. In addition to the investigation of hybrid limits, carried out in-
dependently for general population models [9, 8] and more specifically for gene
networks [19], considerable work has been done in hybrid simulation [45] and in
developing moment closure techniques for hybrid limits [32].

Mean field games. Game theory studies the decisions taken by competing ra-
tional agents. Recently, the notion of mean field games has been introduced in
[40, 35] to model decisions in systems composed of a large number of agents.
In a mean field game, each agent tries to minimise an objective function that



depends on the average behaviour of the population of agents but not on the
action of a precise agent. This simplifies the analysis of Nash equilibria that are
replaced by mean field equilibria. This theory is used for modelling purposes but
also to solve optimisation problems in a decentralised way [52, 30]. It can be
shown that in certain cases, mean field equilibria are the limit of a sub-class of
Nash equilibria [22].

Modelling languages supporting a mean field semantics. In the last ten years,
there has been a considerable interest in extending stochastic modelling lan-
guages, in particular stochastic process algebras, in order to derive automati-
cally mean field equations. Examples are e.g. [47, 18, 14]. This work has also
been extended to generate hybrid semantics in [16, 15, 8]. See also the chapter
of this book on CARMA [42].

6 Conclusion

In this document, we reviewed the notion of mean field limits of a stochastic
population process and presented two extensions. The classical mean field results
show that, under some conditions, a stochastic population process converges to a
deterministic system of ODEs as the number of objects of the population grows.
We have shown that, by replacing the system of ODEs by either a differential
inclusion or a hybrid system, it is possible to enlarge the set models for which a
mean field limit exists. We illustrated these notions by using a classical SIR ex-
ample. The last section gives a few pointers to papers in which these frameworks
can be applied or generalised.
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