40 research outputs found

    Evidence of Presynaptic Localization and Function of the c-Jun N-Terminal Kinase

    Get PDF
    The c-Jun N-terminal kinase (JNK) is part of a stress signalling pathway strongly activated by NMDA-stimulation and involved in synaptic plasticity. Many studies have been focused on the post-synaptic mechanism of JNK action, and less is known about JNK presynaptic localization and its physiological role at this site. Here we examined whether JNK is present at the presynaptic site and its activity after presynaptic NMDA receptors stimulation. By using N-SIM Structured Super Resolution Microscopy as well as biochemical approaches, we demonstrated that presynaptic fractions contained significant amount of JNK protein and its activated form. By means of modelling design, we found that JNK, via the JBD domain, acts as a physiological effector on T-SNARE proteins; then using biochemical approaches we demonstrated the interaction between Syntaxin-1-JNK, Syntaxin-2-JNK, and Snap25-JNK. In addition, taking advance of the specific JNK inhibitor peptide, D-JNKI1, we defined JNK action on the SNARE complex formation. Finally, electrophysiological recordings confirmed the role of JNK in the presynaptic modulation of vesicle release. These data suggest that JNK-dependent phosphorylation of T-SNARE proteins may have an important functional role in synaptic plasticity

    A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein

    Get PDF
    Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrPC) into PrPSc, a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrPSc is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrPC may provide an opportunity to overcome these problems. PrPC ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrPC, and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrPC-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrPC-dependent synaptotoxicity of amyloid-beta (A beta) oligomers, which are associated with Alzheimer's Disease. These results demonstrate that molecules binding to PrPC may produce a dual effect of blocking prion replication and inhibiting PrPC-mediated toxicity

    Role of Glycogen Synthase Kinase-3β in APP Hyperphosphorylation Induced by NMDA Stimulation in Cortical Neurons

    Get PDF
    The phosphorylation of Amyloid Precursor Protein (APP) at Thr668 plays a key role in APP metabolism that is highly relevant to AD. The c-Jun-N-terminal kinase (JNK), glycogen synthase kinase-3β (GSK-3β) and cyclin-dependent kinase 5 (Cdk5) can all be responsible for this phosphorylation. These kinases are activated by excitotoxic stimuli fundamental hallmarks of AD. The exposure of cortical neurons to a high dose of NMDA (100 μM) for 30'-45' led to an increase of P-APP Thr668. During NMDA stimulation APP hyperphosphorylation has to be assigned to GSK-3β activity, since addition of L803-mts, a substrate competitive inhibitor of GSK-3β reduced APP phosphorylation induced by NMDA. On the contrary, inhibition of JNK and Cdk5 with D-JNKI1 and Roscovitine respectively did not prevent NMDA-induced P-APP increase. These data show a tight connection, in excitotoxic conditions, between APP metabolism and the GSK-3β signaling pathway

    JNK Activation Correlates with Cognitive Impairment and Alteration of the Post-Synaptic Element in the 5xFAD AD Mouse Model

    Get PDF
    The c-Jun N-terminal kinases (JNKs) are a family of proteins that, once activated by stress stimuli, can alter neuronal functions and survival. The JNK cascade plays a crucial role in the post-synaptic neuronal compartment by altering its structural organization and leading, at worst, to an overall impairment of neuronal communication. Increasing evidence suggests that synaptic impairment is the first neurodegenerative event in Alzheimer’s disease (AD). To better elucidate this mechanism, we longitudinally studied 5xFAD mice at three selected time points representative of human AD symptom progression. We tested the mice cognitive performance by using the radial arm water maze (RAWM) in parallel with biochemical evaluations of post-synaptic enriched protein fraction and total cortical parenchyma. We found that 5xFAD mice presented a strong JNK activation at 3.5 months of age in the post-synaptic enriched protein fraction. This JNK activation correlates with a structural alteration of the post-synaptic density area and with memory impairment at this early stage of the disease that progressively declines to cause cell death. These findings pave the way for future studies on JNK as a key player in early neurodegeneration and as an important therapeutic target for the development of new compounds able to tackle synaptic impairment in the early phase of AD pathology

    Crosstalk between JNK and SUMO Signaling Pathways: deSUMOylation Is Protective against H2O2-Induced Cell Injury

    Get PDF
    Background: Oxidative stress is a key feature in the pathogenesis of several neurological disorders. Following oxidative stress stimuli a wide range of pathways are activated and contribute to cellular death. The mechanism that couples c-Jun N-terminal kinase (JNK) signaling, a key pathway in stress conditions, to the small ubiquitin-related modifier (SUMO), an emerging protein in the field, is largely unknown. Methodology/Principal Findings: With this study we investigated if SUMOylation participates in the regulation of JNK activation as well as cellular death in a model of H 2O 2 induced-oxidative stress. Our data show that H 2O 2 modulates JNK activation and induces cellular death in neuroblastoma SH-SY5Y cells. Inhibition of JNK’s action with the D-JNKI1 peptide rescued cells from death. Following H2O2, SUMO-1 over-expression increased phosphorylation of JNK and exacerbated cell death, although only in conditions of mild oxidative stress. Furthermore inhibition of SUMOylation, following transfection with SENP1, interfered with JNK activation and rescued cells from H 2O 2 induced death. Importantly, in our model, direct interaction between these proteins can occur. Conclusions/Significance: Taken together our results show that SUMOylation may significantly contribute to modulation o

    The Parkinson's Disease-Linked Protein DJ-1 Associates with Cytoplasmic mRNP Granules During Stress and Neurodegeneration.

    Get PDF
    Mutations in the gene encoding DJ-1 are associated with autosomal recessive forms of Parkinson's disease (PD). DJ-1 plays a role in protection from oxidative stress, but how it functions as an "upstream" oxidative stress sensor and whether this relates to PD is still unclear. Intriguingly, DJ-1 may act as an RNA binding protein associating with specific mRNA transcripts in the human brain. Moreover, we previously reported that the yeast DJ-1 homolog Hsp31 localizes to stress granules (SGs) after glucose starvation, suggesting a role for DJ-1 in RNA dynamics. Here, we report that DJ-1 interacts with several SG components in mammalian cells and localizes to SGs, as well as P-bodies, upon induction of either osmotic or oxidative stress. By purifying the mRNA associated with DJ-1 in mammalian cells, we detected several transcripts and found that subpopulations of these localize to SGs after stress, suggesting that DJ-1 may target specific mRNAs to mRNP granules. Notably, we find that DJ-1 associates with SGs arising from N-methyl-D-aspartate (NMDA) excitotoxicity in primary neurons and parkinsonism-inducing toxins in dopaminergic cell cultures. Thus, our results indicate that DJ-1 is associated with cytoplasmic RNA granules arising during stress and neurodegeneration, providing a possible link between DJ-1 and RNA dynamics which may be relevant for PD pathogenesis

    Cell Permeable Peptides: A Promising Tool to Deliver Neuroprotective Agents in the Brain

    No full text
    The inability of most drugs to cross the blood-brain barrier and/or plasma membrane limits their use for biomedical applications in the brain. Cell Permeable Peptides (CPPs) overcome this problem and are effective in vivo, crossing the plasma membrane and the blood-brain barrier. CPPs deliver a wide variety of compounds intracellularly in an active form. In fact, many bioactive cargoes have neuroprotective properties, and due to their ability to block protein-protein interactions, offer exciting perspectives in the clinical setting. In this review we give an overview of the Cell Permeable Peptides strategy to deliver neuroprotectants against neurodegeneration in the CNS
    corecore