4 research outputs found

    Mapping of heteroplasmic mitochondrial DNA deletions in Kearns-Sayre syndrome.

    No full text
    Kearns-Sayre syndrome (KSS) is a progressive neuromuscular disease characterised by ophtalmoplegia, cardiac bloc branch, pigmentary retinopathy associated with abnormal mitochondrial function. We have studied the mitochondrial DNA organization of patients presenting KSS and have found large deletions ranging from 3 to 8.5 kilobase pairs. DNA molecules containing deletion are accompanied by the presence of the normal sized mtDNA molecule forming heteroplasmic genomes. The deletions always map in the region which is potentially single stranded during mitochondrial DNA replication. The deletions differ in length and position between individuals but are similar within the different tissues of an individual suggesting that they arise during or before embryogenesis

    LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development

    Get PDF
    In humans, low peak bone mass is a significant risk factor for osteoporosis. We report that LRP5, encoding the low-density lipoprotein receptor-related protein 5, affects bone mass accrual during growth. Mutations in LRP5 cause the autosomal recessive disorder osteoporosis-pseudoglioma syndrome (OPPG). We find that OPPG carriers have reduced bone mass when compared to age- and gender-matched controls. We demonstrate LRP5 expression by osteoblasts in situ and show that LRP5 can transduce Wnt signaling in vitro via the canonical pathway. We further show that a mutant-secreted form of LRP5 can reduce bone thickness in mouse calvarial explant cultures. These data indicate that Wnt-mediated signaling via LRP5 affects bone accrual during growth and is important for the establishment of peak bone mass
    corecore