751 research outputs found
Classification of phase transitions in small systems
We present a classification scheme for phase transitions in finite systems
like atomic and molecular clusters based on the Lee-Yang zeros in the complex
temperature plane. In the limit of infinite particle numbers the scheme reduces
to the Ehrenfest definition of phase transitions and gives the right critical
indices. We apply this classification scheme to Bose-Einstein condensates in a
harmonic trap as an example of a higher order phase transitions in a finite
system and to small Ar clusters.Comment: 12 pages, 4 figures, accepted for publication in Phys. Rev. Let
Classification of the Nuclear Multifragmentation Phase Transition
Using a recently proposed classification scheme for phase transitions in
finite systems [Phys.Rev.Lett.{\bf 84},3511 (2000)] we show that within the
statistical standard model of nuclear multifragmentation the predicted phase
transition is of first order.Comment: 5 pages, 4 eps figures, accepted for publication in Phys.Rev.C (in
press
The Origins of Phase Transitions in Small Systems
The identification and classification of phases in small systems, e.g.
nuclei, social and financial networks, clusters, and biological systems, where
the traditional definitions of phase transitions are not applicable, is
important to obtain a deeper understanding of the phenomena observed in such
systems. Within a simple statistical model we investigate the validity and
applicability of different classification schemes for phase transtions in small
systems. We show that the whole complex temperature plane contains necessary
information in order to give a distinct classification.Comment: 3 pages, 4 figures, revtex 4 beta 5, for further information see
http://www.smallsystems.d
Anisotropic electrical and thermal magnetotransport in the magnetic semimetal GdPtBi
The half-Heusler rare-earth intermetallic GdPtBi has recently gained
attention due to peculiar magnetotransport phenomena that have been associated
with the possible existence of Weyl fermions, thought to arise from the
crossings of spin-split conduction and valence bands. On the other hand,
similar magnetotransport phenomena observed in other rare-earth intermetallics
have often been attributed to the interaction of itinerant carriers with
localized magnetic moments stemming from the -shell of the rare-earth
element. In order to address the origin of the magnetotransport phenomena in
GdPtBi, we performed a comprehensive study of the magnetization, electrical and
thermal magnetoresistivity on two single-crystalline GdPtBi samples. In
addition, we performed an analysis of the Fermi surface via Shubnikov-de Haas
oscillations in one of the samples and compared the results to \emph{ab initio}
band structure calculations. Our findings indicate that the electrical and
thermal magnetotransport in GdPtBi cannot be solely explained by Weyl physics
and is strongly influenced by the interaction of both itinerant charge carriers
and phonons with localized magnetic Gd-ions and possibly also paramagnetic
impurities.Comment: 11 figure
Recommended from our members
Experimental characterization of the COndensation PArticle counting System for high altitude aircraft-borne application
A characterization of the ultra-fine aerosol particle counter COPAS (COndensation PArticle counting System) for operation on board the Russian high altitude research aircraft M-55 Geophysika is presented. The COPAS instrument consists of an aerosol inlet and two dual-channel continuous flow Condensation Particle Counters (CPCs) operated with the chlorofluorocarbon FC-43. It operates at pressures between 400 and 50 hPa for aerosol detection in the particle diameter (dp) range from 6 nm up to 1 ÎŒm. The aerosol inlet, designed for the M-55, is characterized with respect to aspiration, transmission, and transport losses. The experimental characterization of counting efficiencies of three CPCs yields dp50 (50% detection particle diameter) of 6 nm, 11 nm, and 15 nm at temperature differences (ÎT) between saturator and condenser of 17°C, 30°C, and 33°C, respectively. Non-volatile particles are quantified with a fourth CPC, with dp50=11 nm. It includes an aerosol heating line (250°C) to evaporate H2SO4-H2O particles of 11 nm<dp<200 nm at pressures between 70 and 300 hPa. An instrumental in-flight inter-comparison of the different COPAS CPCs yields correlation coefficients of 0.996 and 0.985. The particle emission index for the M-55 in the range of 1.4â8.4Ă1016 kgâ1 fuel burned has been estimated based on measurements of the Geophysika's own exhaust
Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002)
International audienceDetailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD) in Southern Germany. Online measurements included: Size-resolved chemical composition of submicron particles; total particle number concentrations and size distributions over the diameter range of 3 nm to 9 ?m; gas-phase concentration of monoterpenes, CO, O3, OH, and H2SO4. Filter sampling and offline analytical techniques were used to determine: Fine particle mass (PM2.5), organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5), and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins). Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 ?g m?3, arithmetic mean and standard deviation) accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 ?g m?3). The relative proportions of non-refractory submicron particle components were: (23±39)% ammonium nitrate, (27±23)% ammonium sulfate, and (50±40)% organics (OM1). OM1 was closely correlated with PM1 (r2=0.9) indicating a near-constant ratio of non-refractory organics and inorganics. The average ratio of OM1 to OC2.5 was 2.1±1.4, indicating a high proportion of heteroelements in the organic fraction of the sampled rural aerosol. This is consistent with the high ratio of oxygenated organic aerosol (OOA) over hydrocarbon-like organic aerosol (HOA) inferred from the AMS results (4:1), and also with the high abundance of proteins (~3%) indicating a high proportion of primary biological material (~30%) in PM2.5. This finding was confirmed by low abundance of PAHs (?3) and EC (?3) in PM2.5 and detection of several secondary organic aerosol compounds (dicarboxylic acids) and their precursors (monoterpenes). New particle formation was observed almost every day with particle number concentrations exceeding 104 cm?3 (nighttime background level 1000?2000 cm?3). Closer inspection of two major events indicated that the observed nucleation agrees with ternary H2SO4/H2O/NH3 nucleation and that condensation of both organic and inorganic species contributed to particle growth
Symmetries of microcanonical entropy surfaces
Symmetry properties of the microcanonical entropy surface as a function of
the energy and the order parameter are deduced from the invariance group of the
Hamiltonian of the physical system. The consequences of these symmetries for
the microcanonical order parameter in the high energy and in the low energy
phases are investigated. In particular the breaking of the symmetry of the
microcanonical entropy in the low energy regime is considered. The general
statements are corroborated by investigations of various examples of classical
spin systems.Comment: 15 pages, 5 figures include
Borrmann Effect in Photonic Crystals: Nonlinear Optical Consequences
Nonlinear-optical manifestations of the Borrmann effect that are consequences
of the spectral dependence of the spatial distributions of the electromagnetic
field in a structure are observed in one-dimensional photonic crystals. The
spectrum of the light self-focusing effect corresponding to the
propagation-matrix calculations has been measured near the edge of the photonic
gap.Comment: 4 pages, 3 figures, published in russian at Pis'ma v Zhurnal
Eksperimental'noi i Teoreticheskoi Fiziki, 2008, Vol. 87, No. 8, pp. 461-46
Ultrathin Tropical Tropopause Clouds (UTTCs) : I. Cloud morphology and occurrence
Subvisible cirrus clouds (SVCs) may contribute to dehydration close to the tropical tropopause. The higher and colder SVCs and the larger their ice crystals, the more likely they represent the last efficient point of contact of the gas phase with the ice phase and, hence, the last dehydrating step, before the air enters the stratosphere. The first simultaneous in situ and remote sensing measurements of SVCs were taken during the APE-THESEO campaign in the western Indian ocean in February/March 1999. The observed clouds, termed Ultrathin Tropical Tropopause Clouds (UTTCs), belong to the geometrically and optically thinnest large-scale clouds in the EarthÂŽs atmosphere. Individual UTTCs may exist for many hours as an only 200--300 m thick cloud layer just a few hundred meters below the tropical cold point tropopause, covering up to 105 km2. With temperatures as low as 181 K these clouds are prime representatives for defining the water mixing ratio of air entering the lower stratosphere
- âŠ