6,949 research outputs found

    Entanglement and the Quantum Brachistochrone Problem

    Get PDF
    Entanglement is closely related to some fundamental features of the dynamics of composite quantum systems: quantum entanglement enhances the "speed" of evolution of certain quantum states, as measured by the time required to reach an orthogonal state. The concept of "speed" of quantum evolution constitutes an important ingredient in any attempt to determine the fundamental limits that basic physical laws impose on how fast a physical system can process or transmit information. Here we explore the relationship between entanglement and the speed of quantum evolution in the context of the quantum brachistochrone problem. Given an initial and a final state of a composite system we consider the amount of entanglement associated with the brachistochrone evolution between those states, showing that entanglement is an essential resource to achieve the alluded time-optimal quantum evolution.Comment: 6 pages, 3 figures. Corrected typos in Eqs. 1 and

    The Mariner 5 flight path and its determination from tracking data

    Get PDF
    Mariner 5 flight path and its determination from tracking dat

    Robustness of Highly Entangled Multi-Qubit States Under Decoherence

    Get PDF
    We investigate the decay of entanglement, due to decoherence, of multi-qubit systems that are initially prepared in highly (in some cases maximally) entangled states. We assume that during the decoherence processes each qubit of the system interacts with its own, independent environment. We determine, for systems with a small number of qubits and for various decoherence channels, the initial states exhibiting the most robust entanglement. We also consider a restricted version of this robustness optimization problem, only involving states equivalent under local unitary transformations to the |GHZ> state.Comment: 16 pages, 3 figures. Changes in Sec.

    Time-optimal CNOT between indirectly coupled qubits in a linear Ising chain

    Full text link
    We give analytical solutions for the time-optimal synthesis of entangling gates between indirectly coupled qubits 1 and 3 in a linear spin chain of three qubits subject to an Ising Hamiltonian interaction with equal coupling JJ plus a local magnetic field acting on the intermediate qubit. The energy available is fixed, but we relax the standard assumption of instantaneous unitary operations acting on single qubits. The time required for performing an entangling gate which is equivalent, modulo local unitary operations, to the CNOT(1,3)\mathrm{CNOT}(1, 3) between the indirectly coupled qubits 1 and 3 is T=3/2J1T=\sqrt{3/2} J^{-1}, i.e. faster than a previous estimate based on a similar Hamiltonian and the assumption of local unitaries with zero time cost. Furthermore, performing a simple Walsh-Hadamard rotation in the Hlibert space of qubit 3 shows that the time-optimal synthesis of the CNOT±(1,3)\mathrm{CNOT}^{\pm}(1, 3) (which acts as the identity when the control qubit 1 is in the state 0\ket{0}, while if the control qubit is in the state 1\ket{1} the target qubit 3 is flipped as ±\ket{\pm}\rightarrow \ket{\mp}) also requires the same time TT.Comment: 9 pages; minor modification

    Some features of the state-space trajectories followed by robust entangled four-qubit states during decoherence

    Get PDF
    In a recent work (Borras et al., Phys. Rev. A {\bf 79}, 022108 (2009)), we have determined, for various decoherence channels, four-qubit initial states exhibiting the most robust possible entanglement. Here we explore some geometrical features of the trajectories in state space generated by the decoherence process, connecting the initially robust pure state with the completely decohered mixed state obtained at the end of the evolution. We characterize these trajectories by recourse to the distance between the concomitant time dependent mixed state and different reference states.Comment: 13 pages, 5 figures; new title, minor change

    Multiqubit systems: highly entangled states and entanglement distribution

    Get PDF
    Texto completo arXiv:0803.3979v1.-- PACS: 03.67.Lx Quantum computation architectures and implementations 03.67.Mn Entanglement measures, witnesses, and other characterizations 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell's inequalities, GHZ states, etc.).-A comparison is made of various searching procedures, based upon different entanglement measures or entanglement indicators, for highly entangled multi-qubits states. In particular, our present results are compared with those recently reported by Brown et al. [J. Phys. A: Math. Gen. 38 (2005) 1119]. The statistical distribution of entanglement values for the aforementioned multi-qubit systems is also exploredThis work was partially supported by the MEC grant FIS2005-02796 (Spain) and FEDER (EU) and by CONICET (Argentine Agency). The financial assistance of the National Research Foundation (NRF; South African Agency) toward this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily to be attributed to the NRF. A Borras acknowledges support from the FPU grant AP-2004- ´ 2962 (MEC-Spain)Peer reviewe

    Fragile Heterosexuality

    Get PDF
    Previous research demonstrates that membership of majority groups is often perceived as more fragile than membership of minority groups. Four studies (N1=90, N2=247, N3=500, N4=1176) investigated whether this was the case for heterosexual identity, relative to gay identity. Support for fragile heterosexuality was found using various methods: sexual orientation perceptions of a target who engaged in incongruent behaviour, free-responses concerning behaviours required to change someone’s mind about a target’s sexual orientation, agreement with statements about men/women’s sexual orientation and agreement with gender neutral statements about sexual orientation. Neither participant nor target gender eliminated or reversed this effect. Additionally, we investigated multiple explanations (moderators) of the perceived difference in fragility between heterosexual identity and gay identity and found that higher estimates of the gay/lesbian population decreased the difference between the (higher) perceived fragility of heterosexual identity and the (lower) perceived fragility of gay identity

    Multi-Qubit Systems: Highly Entangled States and Entanglement Distribution

    Full text link
    A comparison is made of various searching procedures, based upon different entanglement measures or entanglement indicators, for highly entangled multi-qubits states. In particular, our present results are compared with those recently reported by Brown et al. [J. Phys. A: Math. Gen. 38 (2005) 1119]. The statistical distribution of entanglement values for the aforementioned multi-qubit systems is also explored.Comment: 24 pages, 3 figure
    corecore