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Entanglement is closely related to some fundamental features of the dynamics of composite quan-
tum systems: quantum entanglement enhances the “speed” of evolution of certain quantum states,
as measured by the time required to reach an orthogonal state. The concept of “speed” of quantum
evolution constitutes an important ingredient in any attempt to determine the fundamental limits
that basic physical laws impose on how fast a physical system can process or transmit information.
Here we explore the relationship between entanglement and the speed of quantum evolution in the
context of the quantum brachistochrone problem. Given an initial and a final state of a compos-
ite system we consider the amount of entanglement associated with the brachistochrone evolution
between those states, showing that entanglement is an essential resource to achieve the alluded
time-optimal quantum evolution.
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The celebrated brachistochrone problem has played a
distinguished role in the history of mechanics [1]. A quan-
tum dynamical optimization problem akin to the classical
brachistochrone one has attracted the attention of sev-
eral researchers in recent years [2, 3, 4, 5]. This problem
deals with the Hamiltonian generating the optimal quan-
tum evolution |ψ(t)〉 (in the sense of the one requiring the
shortest time τ) between two prescribed states |ψI〉 and
|ψF 〉. It has been recently established that the entangle-
ment features of quantum states are important in connec-
tion with dynamical optimization problems [6, 7, 8, 9].
Previous research done on this subject has been focused
upon the study of the time needed to reach an orthogonal
state by systems evolving under a given Hamiltonian [10].
The details of these kind of studies depend strongly on
the particular Hamiltonian considered, and each case re-
quires a separate treatment (see, for instance, [8, 9]). The
aim of the present contribution is to revisit the connec-
tion between entanglement and optimal evolution from
the different (but related) point of view provided by the
quantum brachistochrone problem. An important advan-
tage of the brachistochrone approach is that it allows for
a more general and unified investigation of the alluded
connection, going beyond the separate analysis of indi-
vidual cases.

I. ROLE OF ENTANGLEMENT IN

TIME-OPTIMAL QUANTUM EVOLUTION

As already mentioned, our aim is to explore the con-
nection between entanglement and the quantum brachis-
tochrone evolution of a bipartite system constituted by
two subsystems A and B (with associated Hilbert spaces
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of dimensions NA and NB, respectively). We want to
quantify the amount of entanglement involved when im-
plementing the evolution of an initial state |ψI〉 to a fi-
nal state |ψF 〉 in the shortest possible time. Following
[3], we are going to consider the optimal evolution under
the constraint that the difference between the maximum
and minimum eigenenergies of the Hamiltonian generat-

ing the unitary transformation |ψI〉 → |ψF 〉 = e
iHτ

h̄ |ψI〉
be less or equal to a given constant energy 2ω. This
constraint is imposed due to the following reason: if the
differences between the eigenenergies of the Hamiltonian
are arbitrarily large, then it is easy to implement a quan-
tum evolution connecting the alluded states and taking a
time τ that can be made arbitrarily small. The optimal
time evolution is given by [3]

|ψ(t)〉 =

[

cos

(

ωt

h̄

)

− cos 1
2θ

sin 1
2θ

sin

(

ωt

h̄

)]

|ψI〉

+
1

sin 1
2θ

sin

(

ωt

h̄

)

|ψF 〉. (1)

This expression satisfies |ψ(0)〉 = |ψI〉 and |ψ(τ)〉 = |ψF 〉,
where

τ =
h̄θ

2ω
. (2)

To determine the parameter θ, the final state |ψF 〉 has
to be written in the form

|ψF 〉 = cos
1

2
θ|ψI〉 + ei(φ+π/2) sin

1

2
θ|ψI〉, (3)

where |ψI〉 is a state orthogonal to the initial state |ψI〉
contained in the two-dimensional subspace (of the full
Hilbert space) spanned by the initial and final states.
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Since both |ψI〉 and |ψF 〉 are specified, the values of φ
and θ can be regarded as known, the latter being the
angle of separation of these two states. We are going to
focus upon the case where the initial and final states are
orthogonal, thus having θ = π and,

τ =
πh̄

2ω

|ψ(t)〉 = cos

(

ωt

h̄

)

|ψI〉 + sin

(

ωt

h̄

)

|ψF 〉. (4)

From the point of view of the physics of information and
computation this case is the most interesting because the
evolution of a computer devise into a state orthogonal
to the initial one can be identified with an elementary
information processing step [11].

In order to assess how much entanglement is involved
in the brachistochrone evolution we are going to compute
the time-average of the entanglement E [ψ(t)] during the
optimal time evolution from |ψI〉 → |ψF 〉,

〈E〉 =
1

τ

∫ τ

0

E(t)dt. (5)

The idea of time averaged entanglement has been recently
discussed by several researchers and was found to consti-
tute a useful concept to study a variety of problems (see,
for instance, [12] and references therein). To facilitate the
computations we use the linear entropy as entanglement
measure,

E [ψ(t)] =
NA

NA − 1

[

1 − Tr
(

ρ2
A

)

]

, (6)

where ρA is the marginal density matrix associated with
one of the two subsystems (the one with the Hilbert
space of lower dimension), ρA = TrB[ρ(t)], and the
global density matrix describing the bi-partite system is
ρ(t) = |ψ(t)〉〈ψ(t)|. Since the entanglement E(t) depends
upon time only through the quantity ξ = ωt

h̄ , the integral
giving the time-averaged entanglement can be put under
the guise

〈E〉 =
2

π

∫ π/2

0

E(ξ) dξ, (7)

implying that 〈E〉 is independent of ω and since τ = πh̄
2ω ,

this means that 〈E〉 is also independent of the absolute
time taken.
Highly asymmetric states can evolve optimally without
entanglement. This is clearly illustrated by the extreme
case corresponding to factorizable initial and final states
of the form

|ψ̃I〉 = |φ1〉 ⊗ |φ0〉

|ψ̃F 〉 = |φ2〉 ⊗ |φ0〉, (8)

where one of the subsystems (in this case, the second
subsystem) is in the same state |φ0〉 at the beginning
and at the end of the process. It is plain that in such
circumstances the brachistochrone evolution can be im-
plemented without entanglement. Indeed, the optimal
evolution is given by the time dependent, separable state

|ψ̃(t)〉 = |φ(t)〉 ⊗ |φ0〉, (9)

|φ(t)〉 being the optimal evolution of the first subsystem
connecting the states |φ1〉 and |φ2〉. It is also clear that
in this highly asymmetric setting only one of the sub-
systems (the first one) is evolving and, consequently, we
are essentially dealing with the evolution of a single sys-
tem. That is, the composite nature of the total system
plays no role in an evolution like (9). This is fully consis-
tent with similar results reported by Giovannetti, Lloyd
and Maccone in [6]. There it was pointed out that, for
composite a system with non-interacting subsystems, as-
symetric non-entangled states in which all the energetic
resources are concentrated in one subsystem can saturate
the fundamental lower bound for the time required to
reach a state orthogonal to the original one. On the con-
trary, symmetric non-entangled states with evenly shared
energetic resources do not saturate the alluded bound.

States of the form (8) are the only pairs of orthogo-
nal initial and final states such that the time averaged
entanglement of the concomitant optimal evolution van-
ishes. This can be seen as follows. Suppose that the time
averaged entanglement is zero. That implies that the en-
tanglement is zero at all times t ∈ [0, τ ]. In particular,
the initial and the final states must be separable. Since
they are also orthogonal we can assume, without loss of
generality, that the initial and final states are, respec-
tively, of the form |ψI〉 = |0〉⊗|φr〉 and |ψF 〉 = |1〉⊗|φs〉.
Now, the time dependent state must be separable also at
all intermediate times t ∈ [0, τ ]. In particular, it must be
separable at the time corresponding to ωt

h̄ = π
4 . That is,

the state (1/
√

2)(|0〉 ⊗ |φr〉 + |1〉 ⊗ |φs〉) has to be sep-
arable. But for this state we have E = 1 − |〈φr|φs〉|2.
Consequently, the entanglement of this state will be zero
only if |〈φr|φs〉| = 1, and so the pair of initial and final
states is of the form (8).

II. TWO-QUBIT SYSTEMS

The features of the optimal evolution which are asso-
ciated with the composite nature of the system (such as
the role of entanglement) are more clearly seen when we
study the evolution of symmetric states. For this reason
we are now going to pay special attention on the optimal
evolution of two-qubit systems associated with symmet-
ric initial and final states.

First we are are going to consider three specific cases
of optimal evolution of symmetric sates of two qubit sys-
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tems associated, respectively, with the following three
pairs of initial and final states,

• (i) |00〉 → cos α√
2
{|01〉+ |10〉} + sinα|11〉

• (ii) 1√
2
{|01〉 + |10〉} → 1√

2
{|00〉 + |11〉}

• (iii) 1√
2
{|00〉 − i|11〉} → 1√

2
{i|00〉 − |11〉}.

Let us discuss each example separately:
(i). In this case we have the evolution of a separable
state into one of a family of possible final states parame-
terized by the real parameter α. According to the value
of this parameter we may have for the final state either
another separable state (α = π

2 ), an intermediately en-
tangled state (α ∈ (0, π

2 )) or a maximally entangled state

(α = 0). Let ξ = ωt
h̄ . Then the time dependent, opti-

mally evolving state, the concomitant entanglement, and
its time average are respectively given by,

|Ψ(ξ, α)〉 = cos ξ |00〉 + sin ξ
cosα√

2
[|01〉 + |10〉]

+ sin ξ sinα |11〉,
E(ξ, α) =

(

cos(α)
2
sin(ξ)

2 − sin(α) sin(2 ξ)
)2

,

〈E(α)〉 =
3

8
cos(α)

4 − 2

π
cos(α)

2
sin(α)

+
1

2
sin(α)

2
. (10)
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FIG. 1: Plot of 〈E(α)〉 as a function of α, α ∈ [0, π

2
].

Figure 1 is a plot of the time averaged entanglement
〈E(α)〉 as a function of the parameter α. For |00〉 → |11〉
(α = π

2 ) we have the optimal time evolution of two
qubits from an initial symmetric separable state into
a final symmetric separable state orthogonal to the
initial one. In this case we have 〈E〉 = 1

2 , which is the
maximum time-average entanglement in this family of
evolutions. On the other hand |00〉 → 1√

2
[|01〉 + |10〉]

(α = 0) constitutes an instance of the optimal evolu-
tion of a separable state into a symmetric maximally
entangled state. In this case we have that 〈E〉 = 3

8 . Of

particular interest is the minimum of the time-average
entanglement within the family, which happens when

|00〉 → 1√
3
[|01〉 + |10〉 + |11〉] (α = arcsin

(

1√
3

)

) and

gives 〈E〉 = 0.088298.

(ii). This constitutes a particular instance of the opti-
mal transformation of a symmetric maximally entangled
state to another symmetric maximally entangled state.
The time dependent entanglement and its average are,
respectively,

E(t) = cos2
(

ωt

h̄

)

, 〈E〉 =
1

2
. (11)

In this particular case the same amount of time-averaged
entanglement is needed to transform a maximally
entangled state into another maximally entangled state
as is needed to transform a separable state into another
separable state.

(iii) In this case the optimally evolving state is maximally
entangled at all times, consequently giving E = 1.

III. TYPICAL ENTANGLEMENT PROPERTIES

OF TIME-OPTIMAL EVOLUTIONS OF

TWO-QUBIT SYSTEMS

Even when considering only two qubits and restricting
|ψI〉 and |ψF 〉 to be symmetric and orthogonal, the ex-
pression for 〈E〉 becomes quite involved, thus making an
analytic treatment of certain properties of the optimal
evolution unpractical.

In order to explore the typical entanglement features of
optimal evolutions in two-qubits systems we are going to
generate random pairs of symmetric (orthogonal) initial
and final states,

|ψI〉 = c1|00〉 + c2
1√
2

(

|01〉+ |10〉
)

+ c3|11〉,

|ψF 〉 = d1|00〉+ d2
1√
2

(

|01〉 + |10〉
)

+ d3|11〉, (12)

with
∑

i |c2i | =
∑

i |d2
i | = 1 and

∑

i cid
∗
i = 0. We treat

the case of symmetrical states separately because, as we
shall presently see, in this case the necessity of entangle-
ment to implement time-optimal dynamics is somewhat
stronger than in the general case. However, an analysis
similar to the one performed here for symmetrical states
can be implemented for other particular families of states.
We are going to consider the statistical distribution, and
the mean and minimum values of the time averaged en-
tanglement 〈E〉 associated with the time-optimal evolu-
tions connecting the pairs of states |ψI〉 and |ψF 〉. Inter-
preting the triplets (c1, c2, c3) and (d1, d2, d3) as vectors
in a three dimensional Hilbert space, we are going to gen-
erate the random states (12) by applying random 3 × 3
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unitary matrices U to the vectors (1, 0, 0) and (0, 1, 0).
The random matrices U are generated uniformly accord-
ing to the Haar measure (see [13] and references therein).
The corresponding probability distribution for the time
averaged entanglement 〈E〉 is depicted in Figure 2 (solid
line). This distribution, describing the (fractional) vol-
ume of state-space associated with different values of
〈E〉, has a lower cut-off at 〈E〉min = 0.03415330, mean-
ing that, in order to implement a time-optimal evolution
between symmetric two-qubit states a finite, minimum
amount of entanglement is needed. Such an evolution
cannot be implemented without entanglement. On the
other hand, there are time-optimal evolutions between
symmetric states exhibiting a maximum time-averaged
entanglement 〈E〉max = 1.0. The mean value (over all
possible optimal evolutions connecting symmetric states
of two qubits is 〈E〉mean = 0.5.
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2 qubits

Symmetric states
General states

FIG. 2: Plot of the probability density function of the time av-
eraged entanglement 〈E〉 associated with symmetric and gen-
eral two-qubit states.

We have also performed a similar calculation for
time-optimal evolutions connecting two general (that is,
not necessarily symmetrical) normalized and orthogonal
states of two qubits, |ψI〉 = a1|00〉 + a2|01〉 + a3|10〉 +
a4|11〉 and |ψF 〉 = b1|00〉 + b2|01〉 + b3|10〉 + b4|11〉. The
vectors (a1, a2, a3, a4) and (b1, b2, b3, b4) were obtained by
acting with random unitary matrices U (generated uni-
formily according to the Haar measure) upon the vectors
(1, 0, 0, 0) and (0, 1, 0, 0), respectively. The correspond-
ing probability distribution for the 〈E〉-values is shown
in Figure 2 (dashed line). In this case there are optimal
evolutions with arbitrarily small values of the time av-
eraged entanglement. However, the probability density
P (〈E〉) approaches zero as 〈E〉 → 0. Indeed, as we have
already shown, the only optimal evolutions with 〈E〉 = 0
are those of the form (8) where one of the subsystems
does not evolve. It can be clearly appreciated in Figure
2 that, as a general trend, more entanglement is involved
in optimal evolutions between symmetric states than the
one involved in general optimal evolutions (see also Table
I).

IV. SYSTEMS OF HIGHER DIMENSIONALITY

We have also considered the connection between entan-
glement and brachistochrone quantum evolution for two-
qutrit and three-qubit systems (as entanglement measure
for three-qubit states we used the average bi-partite en-
tanglement associated with the three bi-partitions of the
system into a qubit and a two-qubit subsystem). The
corresponding probability densities for the time averaged
entanglement associated with brachistochrone evolutions
connecting random orthogonal states are depicted in Fig-
ure 3. It transpires from this Figure that, both for two-
qutrit and three-qubit systems, a considerable amount of
entanglement is involved in typical brachistochrone evo-
lutions.
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FIG. 3: Plot of the probability density function of the time
averaged entanglement associated with time optimal quantum
evolutions between symmetric and general orthogonal states
of two-qutrit and three-qubit states.

The minimum, maximum, mean and likeliest values of
the time averaged entanglement associated with brachis-
tochrone evolutions between orthogonal symmetric (S)
and general (G) states (for two-qubit, three-qubit and
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two-qutrit systems) are given in Table I.

2 qubits 3 qubits 2 qutrits
S G S G S G

Emin 0.0342 0.0000 0.0304 0.0000 0.0256 0.0000
Emax 1.0000 1.0000 1.0000 1.0000 0.9914 0.9915
Emean 0.5000 0.4000 0.6667 0.6667 0.6429 0.5999

Elikeliest 0.50 0.41 0.71 0.71 0.69 0.64

TABLE I: Minimum, maximum, mean and likeliest time-
averaged entanglement associated with brachistochrone evo-
lutions of systems of 2 qubits, 3 qubits, and 2 qutrits.

V. CONCLUSIONS

We have investigated the role of entanglement in time-
optimal (brachistochrone) evolution of composite quan-
tum systems. We proved that, except for trivial cases
in which only one of the subsystems is actually evolv-
ing, brachistochrone quantum evolution between orthogo-
nal states cannot be implemented without entanglement.
We studied in detail, for two-qubits, three-qubits and
two-qutrits systems, the amount of entanglement (as
measured by the time averaged entanglement) involved
in typical brachistochrone evolutions connecting orthog-
onal initial and final states. In all cases we found that a
considerable amount of entanglement is needed in order
to implement brachistochrone evolutions. The present
approach to the study of the connection between entan-
glement and quantum time-optimal evolution may be re-
garded as “global” in the sense that (for a given system)
it is not based upon the separate analysis of the the dy-
namics generated by different possible Hamiltonians. If
we consider, for instance, a two-qubits system, the global
approach shows that, in general, entanglement is a neces-
sary resource to implement optimal quantum evolutions.
Previous approaches, on the contrary, would require a
separate treatment of each different Hamiltonian of the
system at hand (say, a two-qubit system).

The two alluded strategies, the “global” and the
“Hamiltonian-specific” one, actually complement each

other. The global approach, based upon the brachis-
tochrone evolution, establishes in a general and unified
way that there is a connection between entanglement
and optimal quantum evolution between orthogonal pure
states: considering at the same time (for a given system)
all possible optimum quantum evolutions it is seen that
most of them involve a considerable amount of entangle-
ment. On the other hand, the Hamiltonian-specific treat-
ment permits, for each specific quantum Hamiltonian, a
more detailed analysis of the aforementioned connection
[6, 7, 8, 9, 10].

Summing up, in the present work we have established
a definite connection between entanglement and brachis-
tochrone evolutions connecting pairs of pure orthogo-
nal states. Arguably, time-optimal evolutions between
pure and orthogonal states are (at least from the con-
ceptual point of view) the most important ones, since
the initial and the final state are fully distinguishable
and the alluded evolution can be identified with one el-
ementary information-processing step [11]. However, it
is possible to incorporate within the present approach
brachistochrone evolutions connecting non-orthogonal
pure states, since these evolutions are perfectly well de-
fined [3]. Moreover, it would also be possible to explore
the case of optimal time-evolution between mixed states,
using the techniques advanced in [5]. We plan to inves-
tigate these extensions of the ideas advanced here in a
future contribution.
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