232 research outputs found

    Características métricas de un cuestionario para evaluar la calidad de vida profesional de los médicos cardiólogos

    Get PDF
    Introducción: La calidad de la atención médica de los sistemas de salud parece relacionarse con la satisfacción de los profesionales que los integran; es por ello que el estudio del estrés y la insatisfacción laboral de los profesionales es de especial interés. Por otra parte, es sabido que la medición de la calidad de vida profesional (CVP) puede variar de acuerdo con el instrumento que se utilice, con el entorno organizativo del sistema de salud y con el tipo de profesional o la especialidad que ejerza. Objetivo: Evaluar la factibilidad, la consistencia interna, la capacidad discriminativa y la composición factorial de un cuestionario de CVP aplicado a una población de médicos cardiólogos en la Argentina. Material y métodos: Entre abril y junio de 2007 se propuso un cuestionario anónimo a 717 cardiólogos a fin de evaluar distintos aspectos de la CVP, a saber: percepción de la situación laboral, posibilidad de realización personal y expectativa de futuro. Se realizó un análisis de factores y se midieron la validez de construcción y la confiabilidad del cuestionario. Resultados: El análisis identificó los tres dominios antes señalados. En conjunto, estos tres componentes explicaron el 46% de la variabilidad total del instrumento, nivel exigible para una validez estructural adecuada. Por su parte, el a de Cronbach total del cuestionario fue 0,76. Por último, la confiabilidad se demostró con una buena correlación entre el puntaje total del instrumento y los parciales obtenidos en cada dominio (factor 1: rho = 0,806, p < 0,0001; factor 2: rho = 0,726, p < 0,0001 y factor 3: rho = 0,754, p < 0,0001). Conclusiones: El análisis de las características métricas de este cuestionario demostró la fiabilidad y la validez del instrumento para evaluar la CVP del médico cardiólogo en la Argentina.Facultad de Ciencias Médica

    Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies

    Get PDF
    We present the first joint analysis of gamma-ray data from the MAGIC Cherenkov telescopes and the Fermi Large Area Telescope (LAT) to search for gamma-ray signals from dark matter annihilation in dwarf satellite galaxies. We combine 158 hours of Segue 1 observations with MAGIC with 6-year observations of 15 dwarf satellite galaxies by the Fermi-LAT. We obtain limits on the annihilation cross-section for dark matter particle masses between 10 GeV and 100 TeV - the widest mass range ever explored by a single gamma-ray analysis. These limits improve on previously published Fermi-LAT and MAGIC results by up to a factor of two at certain masses. Our new inclusive analysis approach is completely generic and can be used to perform a global, sensitivity-optimized dark matter search by combining data from present and future gamma-ray and neutrino detectors.Comment: 19 pages, 3 figures. V2: Few typos corrected and references added. Matches published version JCAP 02 (2016) 03

    Long-term multi-wavelength variability and correlation study of Markarian 421 from 2007 to 2009

    Get PDF
    We study the multi-band variability and correlations of the TeV blazar Mrk 421 on year time scales, which can bring additional insight on the processes responsible for its broadband emission. We observed Mrk 421 in the very high energy (VHE) gamma-ray range with the Cherenkov telescope MAGIC-I from March 2007 to June 2009 for a total of 96 hours of effective time after quality cuts. The VHE flux variability is quantified with several methods, including the Bayesian Block algorithm, which is applied to data from Cherenkov telescopes for the first time. The 2.3 year long MAGIC light curve is complemented with data from the Swift/BAT and RXTE/ASM satellites and the KVA, GASP-WEBT, OVRO, and Mets\"ahovi telescopes from February 2007 to July 2009, allowing for an excellent characterisation of the multi-band variability and correlations over year time scales. Mrk 421 was found in different gamma-ray emission states during the 2.3 year long observation period. Flares and different levels of variability in the gamma-ray light curve could be identified with the Bayesian Block algorithm. The same behaviour of a quiet and active emission was found in the X-ray light curves measured by Swift/BAT and the RXTE/ASM, with a direct correlation in time. The behaviour of the optical light curve of GASP-WEBT and the radio light curves by OVRO and Mets\"ahovi are different as they show no coincident features with the higher energetic light curves and a less variable emission. The fractional variability is overall increasing with energy. The comparable variability in the X-ray and VHE bands and their direct correlation during both high- and low-activity periods spanning many months show that the electron populations radiating the X-ray and gamma-ray photons are either the same, as expected in the Synchrotron-Self-Compton mechanism, or at least strongly correlated, as expected in electromagnetic cascades.Comment: Corresponding authors: Ann-Kristin Overkemping ([email protected]), Marina Manganaro ([email protected]), Diego Tescaro ([email protected]), To be published in Astronomy&Astrophysics (A&A), 12 pages, 9 figure

    Unprecedented study of the broadband emission of Mrk 421 during flaring activity in March 2010

    Get PDF
    Context. Because of its proximity, Mrk 421 is one of the best sources on which to study the nature of BL Lac objects. Its proximity allows us to characterize its broadband spectral energy distribution (SED). Aims. The goal is to better understand the mechanisms responsible for the broadband emission and the temporal evolution of Mrk 421. These mechanisms may also apply to more distant blazars that cannot be studied with the same level of detail. Methods. A flare occurring in March 2010 was observed for 13 consecutive days (from MJD 55 265 to MJD 55 277) with unprecedented wavelength coverage from radio to very high energy (VHE; E> 100 GeV) γ-rays with MAGIC, VERITAS, Whipple, Fermi-LAT, MAXI, RXTE, Swift, GASP-WEBT, and several optical and radio telescopes. We modeled the day-scale SEDs with one-zone and two-zone synchrotron self-Compton (SSC) models, investigated the physical parameters, and evaluated whether the observed broadband SED variability can be associated with variations in the relativistic particle population. Results. The activity of Mrk 421 initially was high and then slowly decreased during the 13-day period. The flux variability was remarkable at the X-ray and VHE bands, but it was minor or not significant at the other bands. The variability in optical polarization was also minor. These observations revealed an almost linear correlation between the X-ray flux at the 2–10 keV band and the VHE γ-ray flux above 200 GeV, consistent with the γ-rays being produced by inverse-Compton scattering in the Klein-Nishina regime in the framework of SSC models. The one-zone SSC model can describe the SED of each day for the 13 consecutive days reasonably well, which once more shows the success of this standard theoretical scenario to describe the SEDs of VHE BL Lacs such as Mrk 421. This flaring activity is also very well described by a two-zone SSC model, where one zone is responsible for the quiescent emission, while the other smaller zone, which is spatially separated from the first, contributes to the daily variable emission occurring at X-rays and VHE γ-rays. The second blob is assumed to have a smaller volume and a narrow electron energy distribution with 3 × 104<γ< 6 × 105, where γ is the Lorentz factor of the electrons. Such a two-zone scenario would naturally lead to the correlated variability at the X-ray and VHE bands without variability at the optical/UV band, as well as to shorter timescales for the variability at the X-ray and VHE bands with respect to the variability at the other bands. Conclusions. Both the one-zone and the two-zone SSC models can describe the daily SEDs via the variation of only four or five model parameters, under the hypothesis that the variability is associated mostly with the underlying particle population. This shows that the particle acceleration and cooling mechanism that produces the radiating particles might be the main mechanism responsible for the broadband SED variations during the flaring episodes in blazars. The two-zone SSC model provides a better agreement with the observed SED at the narrow peaks of the low- and high-energy bumps during the highest activity, although the reported one-zone SSC model could be further improved by varying the parameters related to the emitting region itself (δ, B and R), in addition to the parameters related to the particle population.Fil: Aleksic, J.. IFAE; EspañaFil: Ansoldi, S.. Università di Udine; ItaliaFil: Antonelli, L. A.. INAF National Institute for Astrophysics; ItaliaFil: Antoranz, P.. Università di Siena; ItaliaFil: Babic, A.. University of Rijeka; CroaciaFil: Bangale, P.. Max-Planck-Institut für Physik; AlemaniaFil: Barres de Almeida, U.. Max-Planck-Institut für Physik; AlemaniaFil: Barrio, J. A.. Universidad Complutense de Madrid; EspañaFil: Becerra Gonzalez, J.. Inst. de Astrofísica de Canarias; EspañaFil: Bednarek, W.. University of Łódź,; PoloniaFil: Bernardini, E.. Deutsches Elektronen-Synchrotron (DESY); AlemaniaFil: Biasuzzi, B.. Università di Udine; ItaliaFil: Biland, A.. ETH Zurich; SuizaFil: Blanch, O.. IFAE; EspañaFil: Boller, A.. ETH Zurich; SuizaFil: Bonnefoy, S.. Universidad Complutense de Madrid; EspañaFil: Bonnoli, G.. INAF National Institute for Astrophysics ; ItaliaFil: Borracci, F.. Max-Planck-Institut für Physik; AlemaniaFil: Bretz, T.. Universität Würzburg ; AlemaniaFil: Carmona, E.. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas ; EspañaFil: Carosi, A.. INAF National Institute for Astrophysics; ItaliaFil: Colin, P.. Max-Planck-Institut für Physik; AlemaniaFil: Colombo, E.. Inst. de Astrofísica de Canarias; EspañaFil: Contreras, J. L.. Universidad Complutense; EspañaFil: Cortina, J.. IFAE; EspañaFil: Covino, S.. INAF National Institute for Astrophysics; ItaliaFil: Da Vela, P.. Università di Siena; ItaliaFil: Dazzi, F.. Max-Planck-Institut für Physik; AlemaniaFil: Pichel, Ana Carolina. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Rovero, Adrian Carlos. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: The Veritas Collaboration.Fil: The MAGIC Collaboration

    Detection of very high energy gamma-ray emission from the gravitationally-lensed blazar QSO B0218+357 with the MAGIC telescopes

    Get PDF
    Context. QSO B0218+357 is a gravitationally lensed blazar located at a redshift of 0.944. The gravitational lensing splits the emitted radiation into two components, spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes. Aims. The spectral energy distribution of QSO B0218+357 can give information on the energetics of z ~ 1 very high energy gamma- ray sources. Moreover the gamma-ray emission can also be used as a probe of the extragalactic background light at z ~ 1. Methods. MAGIC performed observations of QSO B0218+357 during the expected arrival time of the delayed component of the emission. The MAGIC and Fermi-LAT observations were accompanied by quasi-simultaneous optical data from the KVA telescope and X-ray observations by Swift-XRT. We construct a multiwavelength spectral energy distribution of QSO B0218+357 and use it to model the source. The GeV and sub-TeV data, obtained by Fermi-LAT and MAGIC, are used to set constraints on the extragalactic background light. Results. Very high energy gamma-ray emission was detected from the direction of QSO B0218+357 by the MAGIC telescopes during the expected time of arrival of the trailing component of the flare, making it the farthest very high energy gamma-ray sources detected to date. The observed emission spans the energy range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy distribution of QSO B0218+357 is consistent with current extragalactic background light models. The broad band emission can be modeled in the framework of a two zone external Compton scenario, where the GeV emission comes from an emission region in the jet, located outside the broad line region.Comment: 11 pages, 6 figures, accepted for publication in A&

    Multi-Wavelength Observations of the Blazar 1ES 1011+496 in Spring 2008

    Get PDF
    The BL Lac object 1ES 1011+496 was discovered at Very High Energy gamma-rays by MAGIC in spring 2007. Before that the source was little studied in different wavelengths. Therefore a multi-wavelength (MWL) campaign was organized in spring 2008. Along MAGIC, the MWL campaign included the Metsahovi radio observatory, Bell and KVA optical telescopes and the Swift and AGILE satellites. MAGIC observations span from March to May, 2008 for a total of 27.9 hours, of which 19.4 hours remained after quality cuts. The light curve showed no significant variability. The differential VHE spectrum could be described with a power-law function. Both results were similar to those obtained during the discovery. Swift XRT observations revealed an X-ray flare, characterized by a harder when brighter trend, as is typical for high synchrotron peak BL Lac objects (HBL). Strong optical variability was found during the campaign, but no conclusion on the connection between the optical and VHE gamma-ray bands could be drawn. The contemporaneous SED shows a synchrotron dominated source, unlike concluded in previous work based on nonsimultaneous data, and is well described by a standard one zone synchrotron self Compton model. We also performed a study on the source classification. While the optical and X-ray data taken during our campaign show typical characteristics of an HBL, we suggest, based on archival data, that 1ES 1011+496 is actually a borderline case between intermediate and high synchrotron peak frequency BL Lac objects.Comment: 13 pages, accepted for publication in MNRA
    corecore