456 research outputs found

    The magnetic Bp star 36 Lyncis, I. Magnetic and photospheric properties

    Get PDF
    This paper reports the photospheric, magnetic and circumstellar gas characteristics of the magnetic B8p star 36 Lyncis (HD 79158). Using archival data and new polarised and unpolarised high-resolution spectra, we redetermine the basic physical properties, the rotational period and the geometry of the magnetic field, and the photospheric abundances of various elements.}{Based on magnetic and spectroscopic measurements, we infer an improved rotational period of 3.83475±0.000023.83475\pm 0.00002 d. We determine a current epoch of the longitudinal magnetic field positive extremum (HJD 2452246.033), and provide constraints on the geometry of the dipole magnetic field (i\geq 56\degr, 3210GBd39303210 {\rm G}\leq B_{\rm d}\leq 3930 G, β\beta unconstrained). We redetermine the effective temperature and surface gravity using the optical and UV energy distributions, optical photometry and Balmer line profiles (Teff=13300±300T_{\rm eff}=13300\pm 300 K, logg=3.74.2\log g=3.7-4.2), and based on the Hipparcos parallax we redetermine the luminosity, mass, radius and true rotational speed (L=2.54±0.16L,M=4.0±0.2M,R=3.4±0.7R,veq=4561.5L=2.54\pm 0.16 L_\odot, M=4.0\pm 0.2 M_\odot, R=3.4\pm 0.7 R_\odot, v_{\rm eq}=45-61.5 \kms). We measure photospheric abundances for 21 elements using optical and UV spectra, and constrain the presence of vertical stratification of these elements. We perform preliminary Doppler Imaging of the surface distribution of Fe, finding that Fe is distributed in a patchy belt near the rotational equator. Most remarkably, we confirm strong variations of the Hα\alpha line core which we interpret as due to occultations of the star by magnetically-confined circumstellar gas.Comment: Accepted by Astronomy and Astrophysic

    A cryogenic liquid-mirror telescope on the moon to study the early universe

    Full text link
    We have studied the feasibility and scientific potential of zenith observing liquid mirror telescopes having 20 to 100 m diameters located on the moon. They would carry out deep infrared surveys to study the distant universe and follow up discoveries made with the 6 m James Webb Space Telescope (JWST), with more detailed images and spectroscopic studies. They could detect objects 100 times fainter than JWST, observing the first, high-red shift stars in the early universe and their assembly into galaxies. We explored the scientific opportunities, key technologies and optimum location of such telescopes. We have demonstrated critical technologies. For example, the primary mirror would necessitate a high-reflectivity liquid that does not evaporate in the lunar vacuum and remains liquid at less than 100K: We have made a crucial demonstration by successfully coating an ionic liquid that has negligible vapor pressure. We also successfully experimented with a liquid mirror spinning on a superconducting bearing, as will be needed for the cryogenic, vacuum environment of the telescope. We have investigated issues related to lunar locations, concluding that locations within a few km of a pole are ideal for deep sky cover and long integration times. We have located ridges and crater rims within 0.5 degrees of the North Pole that are illuminated for at least some sun angles during lunar winter, providing power and temperature control. We also have identified potential problems, like lunar dust. Issues raised by our preliminary study demand additional in-depth analyses. These issues must be fully examined as part of a scientific debate we hope to start with the present article.Comment: 35 pages, 11 figures. To appear in Astrophysical Journal June 20 200

    First HARPSpol discoveries of magnetic fields in massive stars

    Get PDF
    In the framework of the Magnetism in Massive Stars (MiMeS) project, a HARPSpol Large Program at the 3.6m-ESO telescope has recently started to collect high-resolution spectropolarimetric data of a large number of Southern massive OB stars in the field of the Galaxy and in many young clusters and associations. In this Letter, we report on the first discoveries of magnetic fields in two massive stars with HARPSpol - HD 130807 and HD 122451, and confirm the presence of a magnetic field at the surface of HD 105382 that was previously observed with a low spectral resolution device. The longitudinal magnetic field measurements are strongly varying for HD 130807 from \sim-100 G to \sim700 G. Those of HD 122451 and HD 105382 are less variable with values ranging from \sim-40 to -80 G, and from \sim-300 to -600 G, respectively. The discovery and confirmation of three new magnetic massive stars, including at least two He-weak stars, is an important contribution to one of the MiMeS objectives: the understanding of origin of magnetic fields in massive stars and their impacts on stellar structure and evolution.Comment: 4 pages, 2 figures, accepted for publication in A&A Lette

    Long axial field of view PET scanners:a road map to implementation and new possibilities

    Get PDF
    In this contribution, several opportunities and challenges for long axial field of view (LAFOV) PET are described. It is an anthology in which the main issues have been highlighted. A consolidated overview of the camera system implementation, business and financial plan, opportunities and challenges is provided. What the nuclear medicine and molecular imaging community can expect from these new PET/CT scanners is the delivery of more comprehensive information to the clinicians for advancing diagnosis, therapy evaluation and clinical research

    Cardiovascular magnetic resonance native T-2 and T-2* quantitative values for cardiomyopathies and heart transplantations:a systematic review and meta-analysis

    Get PDF
    Background: The clinical application of cardiovascular magnetic resonance (CMR) T2 and T2* mapping is currently limited as ranges for healthy and cardiac diseases are poorly defined. In this meta-analysis we aimed to determine the weighted mean of T2 and T2* mapping values in patients with myocardial infarction (MI), heart transplantation, non-ischemic cardiomyopathies (NICM) and hypertension, and the standardized mean difference (SMD) of each population with healthy controls. Additionally, the variation of mapping outcomes between studies was investigated. Methods: The PRISMA guidelines were followed after literature searches on PubMed and Embase. Studies reporting CMR T2 or T2* values measured in patients were included. The SMD was calculated using a random effects model and a meta-regression analysis was performed for populations with sufficient published data. Results: One hundred fifty-four studies, including 13,804 patient and 4392 control measurements, were included. T2 values were higher in patients with MI, heart transplantation, sarcoidosis, systemic lupus erythematosus, amyloidosis, hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM) and myocarditis (SMD of 2.17, 1.05, 0.87, 1.39, 1.62, 1.95, 1.90 and 1.33, respectively, P < 0.01) compared with controls. T2 values in iron overload patients (SMD =-0.54, P = 0.30) and Anderson-Fabry disease patients (SMD = 0.52, P = 0.17) did both not differ from controls. T2* values were lower in patients with MI and iron overload (SMD of-1.99 and-2.39, respectively, P < 0.01) compared with controls. T2* values in HCM patients (SMD =-0.61, P = 0.22), DCM patients (SMD =-0.54, P = 0.06) and hypertension patients (SMD =-1.46, P = 0.10) did not differ from controls. Multiple CMR acquisition and patient demographic factors were assessed as significant covariates, thereby influencing the mapping outcomes and causing variation between studies. Conclusions: The clinical utility of T2 and T2* mapping to distinguish affected myocardium in patients with cardiomyopathies or heart transplantation from healthy myocardium seemed to be confirmed based on this meta-analysis. Nevertheless, variation of mapping values between studies complicates comparison with external values and therefore require local healthy reference values to clinically interpret quantitative values. Furthermore, disease differentiation seems limited, since changes in T2 and T2* values of most cardiomyopathies are similar

    MR signal-fat-fraction analysis and T2*weighted imaging measure BAT reliably on humans without cold exposure

    Get PDF
    Objective. Brown adipose tissue (BAT) is compositionally distinct from white adipose tissue (WAT) in terms of triglyceride and water content. In adult humans, the most significant BAT depot is localized in the supraclavicular area. Our aim is to differentiate brown adipose tissue from white adipose tissue using fat T2* relaxation time mapping and signal-fat-fraction (SFF) analysis based on a commercially available modified 2-point-Dixon (mDixon) water fat separation method. We hypothesize that magnetic resonance (MR) imaging can reliably measure BAT regardless of the cold-induced metabolic activation, with BAT having a significantly higher water and iron content compared to WAT.Material and methods. The supraclavicular area of 13 volunteers was studied on 3 T PET-MRI scanner using T2* relaxation time and SFF mapping both during cold exposure and at ambient temperature; and F-18-FDG PET during cold exposure. Volumes of interest (VOIs) were defined semiautomatically in the supraclavicular fat depot, subcutaneous WAT and muscle.Results. The supraclavicular fat depot (assumed to contain BAT) had a significantly lower SFF and fat T2* relaxation time compared to subcutaneous WAT. Cold exposure did not significantly affect MR-based measurements. SFF and T2* values measured during cold exposure and at ambient temperature correlated inversely with the glucose uptake measured by 18F-FDG PET.Conclusions. Human BAT can be reliably and safely assessed using MRI without cold activation and PET-related radiation exposure. (C) 2017 Elsevier Inc. All rights reserved

    Stellar evolution of massive stars with a radiative alpha-omega dynamo

    Full text link
    Models of rotationally-driven dynamos in stellar radiative zones have suggested that magnetohydrodynamic transport of angular momentum and chemical composition can dominate over the otherwise purely hydrodynamic processes. A proper consideration of the interaction between rotation and magnetic fields is therefore essential. Previous studies have focused on a magnetic model where the magnetic field strength is derived as a function of the stellar structure and angular momentum distribution. We have adapted our one-dimensional stellar rotation code, RoSE, to model the poloidal and toroidal magnetic field strengths with a pair of time-dependent advection-diffusion equations coupled to the equations for the evolution of the angular momentum distribution and stellar structure. This produces a much more complete, though still reasonably simple, model for the magnetic field evolution. Our model reproduces well observed surface nitrogen enrichment of massive stars in the Large Magellanic Cloud. In particular it reproduces a population of slowly-rotating nitrogen-enriched stars that cannot be explained by rotational mixing alone alongside the traditional rotationlly-enriched stars. The model further predicts a strong mass-dependency for the dynamo-driven field. Above a threshold mass, the strength of the magnetic dynamo decreases abruptly and so we predict that more massive stars are much less likely to support a dynamo-driven field than less massive stars.Comment: Accepted for publication in MNRAS. 15 pages, 13 figure

    Targeted optical fluorescence imaging:a meta-narrative review and future perspectives

    Get PDF
    Purpose: The aim of this review is to give an overview of the current status of targeted optical fluorescence imaging in the field of oncology, cardiovascular, infectious and inflammatory diseases to further promote clinical translation. Methods: A meta-narrative approach was taken to systematically describe the relevant literature. Consecutively, each field was assigned a developmental stage regarding the clinical implementation of optical fluorescence imaging. Results: Optical fluorescence imaging is leaning towards clinical implementation in gastrointestinal and head and neck cancers, closely followed by pulmonary, neuro, breast and gynaecological oncology. In cardiovascular and infectious disease, optical imaging is in a less advanced/proof of concept stage. Conclusion: Targeted optical fluorescence imaging is rapidly evolving and expanding into the clinic, especially in the field of oncology. However, the imaging modality still has to overcome some major challenges before it can be part of the standard of care in the clinic, such as the provision of pivotal trial data. Intensive multidisciplinary (pre-)clinical joined forces are essential to overcome the delivery of such compelling phase III registration trial data and subsequent regulatory approval and reimbursement hurdles to advance clinical implementation of targeted optical fluorescence imaging as part of standard practice
    corecore