13 research outputs found

    Experience of universities in practice-oriented training personnel for high-tech enterprises

    Get PDF
    Different options have been considered of work-based learning (WBL) in Russian and foreign universities. Special attention is given to the variant of PBL - project learning (PL) on training bachelors. Basic concepts and principles have been discussed dealing with the organization of PL developed by Aalborg University - one of the founders of this teaching technique. Đąhe advisability is shown of organizing special courses of introduction to project learning in the first two semesters.peer-reviewe

    32-Channel silicon strip detection module for combined X-ray fluorescence spectroscopy and X-ray diffractometry analysis

    Get PDF
    A compact detection module for the simultaneous measurement of XRF and XRD in portable analytical applications, in particular in the mining sector, is presented. The detector head is based on 32 silicon strip detectors, fabricated with a low-leakage technology by FBK and readout by two 16-channel low-noise CUBE charge-sensitive amplifiers. The design of the module and its characterization are reported. Multiple configurations are experimentally compared in terms of strip length, spacing, collimation and charge sharing effects. The optimal configuration for a strip length of 6 mm and pitch 0.2 mm is thus identified. It offers an energy resolution of better than 200 eV at 5.9 keV with moderate cooling (−10°C) and peaking time of 14 ÎŒs

    32-Channel Detection Unit for Combined XRF-XRD in Mining Transportable Applications

    No full text
    We present the design and characterization of a detection unit for simultaneous and combined XRF and XRD analysis of powder mineralogical samples. Arrays of 32 silicon microstrips are coupled to two 16-channel CUBE preamplifiers targeting an energy resolution below 200 eV at 6 keV with moderate cooling. The compact detection module will be mounted on a goniometer inside a suitcase-sized analyzer to be operated in mining sites

    Analyse combinée FluoX-caméra RVB et FluoX-DRX des gisements de latérite nickélifÚre de Nouvelle-Calédonie : nouvelle approche méthodique

    No full text
    International audienceAs part of the European SOLSA project, BRGM and CRISMAT are participating in the development of a multi-sensor expertise bench (SOLSA ID2A-ID2B). The major challenge of SOLSA is to understand the approach of a field geologist to samples in order to enable the retranscription of his knowledge in the form of intelligent algorithms. In this context, a sample prepared in three forms (powder, thin slide and raw sample) was selected in this study. It is a serpentinised harzburgite. The sample was first characterised in the laboratory (X-ray fluorescence, ICP-AES, and X-ray diffraction) and then analysed under these different preparations on SOLSA ID2B. This study showed that the field approach allows similar results to those obtained in the laboratory but with a higher profitability. By comparing the results obtained on the three types of preparation, it was shown that the influence of the sample preparation is minor on the combined FluoX-DRX results. Finally, by creating an algorithm allowing the superposition of RGB images and the spatial distribution of chemical elements (Fig 1), it was possible to improve the knowledge of substitutions within the phases present, the location of certain elements in preferential zones and the element/element and phase/element correlations.Dans le cadre du projet europĂ©en SOLSA, le BRGM et le CRISMAT, participent au dĂ©veloppement d’un banc d’expertise multi-capteurs (SOLSA ID2A-ID2B). L’enjeu majeur de SOLSA, est d’apprĂ©hender l’approche d’un gĂ©ologue de terrain sur des Ă©chantillons afin de permettre une retranscription de son savoir sous forme d’algorithmes intelligents. Dans ce contexte, un Ă©chantillon prĂ©parĂ© sous trois formes (poudre, lame mince et Ă©chantillon brut) a Ă©tĂ© sĂ©lectionnĂ© dans cette Ă©tude. Il s’agit d’une harzburgite serpentinisĂ©e. L’échantillon a d’abord Ă©tĂ© caractĂ©risĂ© en laboratoire (fluorescence X, ICP-AES, et diffraction des rayons X) puis analysĂ© sous ces diffĂ©rentes prĂ©parations sur SOLSA ID2B. Cette Ă©tude a permis de montrer que l’approche de terrain admet des rĂ©sultats similaires aux rĂ©sultats obtenus en laboratoire mais avec une rentabilitĂ© plus Ă©levĂ©e. En comparant les rĂ©sultats obtenus sur les trois types de prĂ©paration, il a Ă©tĂ© dĂ©montrĂ© que l’influence de la prĂ©paration de l’échantillon est mineure sur les rĂ©sultats combinĂ©s FluoX-DRX. Enfin, par la crĂ©ation d’algorithme permettant la superposition d’image RVB et la distribution spatiale des Ă©lĂ©ments chimiques (Fig 1), il a Ă©tĂ© possible d’amĂ©liorer la connaissance des substitutions au sein des phases prĂ©sentes, la localisation de certains Ă©lĂ©ments dans des zones prĂ©fĂ©rentielles et les corrĂ©lations Ă©lĂ©ments/Ă©lĂ©ments et phases/Ă©lĂ©ments

    Analyse combinée FluoX-caméra RVB et FluoX-DRX des gisements de latérite nickélifÚre de Nouvelle-Calédonie : nouvelle approche méthodique

    No full text
    International audienceAs part of the European SOLSA project, BRGM and CRISMAT are participating in the development of a multi-sensor expertise bench (SOLSA ID2A-ID2B). The major challenge of SOLSA is to understand the approach of a field geologist to samples in order to enable the retranscription of his knowledge in the form of intelligent algorithms. In this context, a sample prepared in three forms (powder, thin slide and raw sample) was selected in this study. It is a serpentinised harzburgite. The sample was first characterised in the laboratory (X-ray fluorescence, ICP-AES, and X-ray diffraction) and then analysed under these different preparations on SOLSA ID2B. This study showed that the field approach allows similar results to those obtained in the laboratory but with a higher profitability. By comparing the results obtained on the three types of preparation, it was shown that the influence of the sample preparation is minor on the combined FluoX-DRX results. Finally, by creating an algorithm allowing the superposition of RGB images and the spatial distribution of chemical elements (Fig 1), it was possible to improve the knowledge of substitutions within the phases present, the location of certain elements in preferential zones and the element/element and phase/element correlations.Dans le cadre du projet europĂ©en SOLSA, le BRGM et le CRISMAT, participent au dĂ©veloppement d’un banc d’expertise multi-capteurs (SOLSA ID2A-ID2B). L’enjeu majeur de SOLSA, est d’apprĂ©hender l’approche d’un gĂ©ologue de terrain sur des Ă©chantillons afin de permettre une retranscription de son savoir sous forme d’algorithmes intelligents. Dans ce contexte, un Ă©chantillon prĂ©parĂ© sous trois formes (poudre, lame mince et Ă©chantillon brut) a Ă©tĂ© sĂ©lectionnĂ© dans cette Ă©tude. Il s’agit d’une harzburgite serpentinisĂ©e. L’échantillon a d’abord Ă©tĂ© caractĂ©risĂ© en laboratoire (fluorescence X, ICP-AES, et diffraction des rayons X) puis analysĂ© sous ces diffĂ©rentes prĂ©parations sur SOLSA ID2B. Cette Ă©tude a permis de montrer que l’approche de terrain admet des rĂ©sultats similaires aux rĂ©sultats obtenus en laboratoire mais avec une rentabilitĂ© plus Ă©levĂ©e. En comparant les rĂ©sultats obtenus sur les trois types de prĂ©paration, il a Ă©tĂ© dĂ©montrĂ© que l’influence de la prĂ©paration de l’échantillon est mineure sur les rĂ©sultats combinĂ©s FluoX-DRX. Enfin, par la crĂ©ation d’algorithme permettant la superposition d’image RVB et la distribution spatiale des Ă©lĂ©ments chimiques (Fig 1), il a Ă©tĂ© possible d’amĂ©liorer la connaissance des substitutions au sein des phases prĂ©sentes, la localisation de certains Ă©lĂ©ments dans des zones prĂ©fĂ©rentielles et les corrĂ©lations Ă©lĂ©ments/Ă©lĂ©ments et phases/Ă©lĂ©ments

    Effective planning of observations of space objects on different types of orbits

    No full text
    Abstract: In this paper we review the concept of prospective software package for the automated planning of observations for an optical telescope network. Special attention to issues of more effective planning survey and combined observations of artificial space objects on different types of orbits.Note: Research direction:Mathematical modelling in actual problems of science and technic

    Ison network tracking of space debris: current status and achievements

    No full text
    Interagency International Scientific Optical Network (ISON) represents one of largest systems specializing in observation of space objects. ISON provides permanent monitoring of the whole GEO region, regular surveying of Molniya type orbits, and tracking of objects at GEO, GTO, HEO and LEO. Currently ISON cooperates with 43 observation facilities of various affiliations with 100 telescopes in 17 countries. Six telescope subsets have been completed to the date, ISON encompasses five groups of telescopes and three scheduling centers. Obtained measurements are processed at the KIAM ballistic center to be used for scientific and applied goals, including collision risks analysis and space situation analysis. 20 millions measurements in 2.58 millions of tracklets for more 6740 objects have been collected by KIAM in 2016

    Increasing exploration efficiency with SOLSA Expert System

    No full text
    SOLSA is the first automated expert system for on-site cores analysis. The scope is to provide a prototype to be an innovative and necessary tool for geo-metallurgy, in order to optimize the valorization of the ore. The Expert System consists in the combination of an integrated drilling rig providing cores of high quality, an automated scanner and phase identification software, developed for nickel laterites and bauxites but usable as well in other sectors. SOLSA combines non-destructive sensors and the whole system is driven by an innovative, user-friendly and intelligent software. SOLSA provides more complete information while optimizing the exploration stage, with a significant reduction of costs and return time. Such objective involves, in the first place, to fast, cheaper and systematic acquisition of the data needed for optimizing the process. The adding value takes place first at the exploration or grade control stage, furnishing systematic characterization and regionalization of the different types of ore. Then such information can be used for improving the ore scheduling at the mining and processing stages, toward improving the recovery and efficiency of the processin
    corecore