59 research outputs found

    Mutations affecting cleavage at the p10-capsid protease cleavage site block Rous sarcoma virus replication

    Get PDF
    A series of amino acid substitutions (M239F, M239G, P240F, V241G) were placed in the p10-CA protease cleavage site (VVAM*PVVI) to change the rate of cleavage of the junction. The effects of these substitutions on p10-CA cleavage by RSV PR were confirmed by measuring the kinetics of cleavage of model peptide substrates containing the wild type and mutant p10-CA sites. The effects of these substitutions on processing of the Gag polyprotein were determined by labeling Gag transfected COS-1 cells with (35)S-Met and -Cys, and immunoprecipitation of Gag and its cleavage products from the media and lysate fractions. All substitutions except M239F caused decreases in detectable Gag processing and subsequent release from cells. Several of the mutants also caused defects in production of the three CA proteins. The p10-CA mutations were subcloned into an RSV proviral vector (RCAN) and introduced into a chick embryo fibroblast cell line (DF-1). All of the mutations except M239F blocked RSV replication. In addition, the effects of the M239F and M239G substitutions on the morphology of released virus particles were examined by electron microscopy. While the M239F particles appeared similar to wild type particles, M239G particles contained cores that were large and misshapen. These results suggest that mutations affecting cleavage at the p10-CA protease cleavage site block RSV replication and can have a negative impact on virus particle morphology

    On the Possibility of Arbitrage in Ohi, Kawasaki, Funabashi, and Urawa City Horse Racing

    Get PDF
    textabstractFcγR ligation by Ag-Ab immune complexes (IC) not only mediates effective Ag uptake, but also strongly initiates dendritic cell (DC) maturation, a requirement for effective T cell activation. Besides the activating FcγRI, FcγRIII, and FcγRIV, the inhibitory FcγRIIb is expressed on DCs. It is unclear how the ratio between signals from the activating FcγR and the inhibitory FcγRIIb determines the outcome of FcγR ligation on DCs. By microarray analysis, we compared the transcriptomes of steady state and IC-activated bone marrow-derived wild-type (WT) DCs expressing all FcγR or DCs expressing only activating FcγR (FcγRIIb knockout [KO]) or only the inhibitory FcγRIIb (FcR γ-chain KO). In WT DCs, we observed a gene expression profile associated with effective T cell activation, which was absent in FcR γ-chain KO, but strikingly more pronounced in FcγRIIb KO bone marrow-derived DCs. These microarray results, confirmed at the protein level for many cytokines and other immunological relevant genes, demonstrate that the transcriptome of IC-activated DCs is dependent on the presence of the activating FcγR and that the modulation of the expression of the majority of the genes was strongly regulated by FcγRIIb. Our data suggest that FcγRIIb-deficient DCs have an improved capacity to activate naive T lymphocytes. This was confirmed by their enhanced FcγR-dependent Ag presentation and in vivo induction of CD8 + T cell expansion compared with WT DCs. Our findings underscore the potency of FcgR ligation on DCs for the effective induction of T cell immunity by ICs and the strong regulatory role of FcγRIIb. Copyrigh

    Anti-PEG antibodies compromise the integrity of PEGylated lipid-based nanoparticles via complement

    Get PDF
    PEGylation of lipid-based nanoparticles and other nanocarriers is widely used to increase their stability and plasma half-life. However, either pre-existing or de novo formed anti-PEG antibodies can induce hypersensitivity reactions and accelerated blood clearance through binding to the nanoparticle surfaces, leading to activation of the complement system. In this study, we investigated the consequences and mechanisms of complement activation by anti-PEG antibodies interacting with different types of PEGylated lipid-based nanoparticles. By using both liposomes loaded with different (model) drugs and LNPs loaded with mRNA, we demonstrate that complement activation triggered by anti-PEG antibodies can compromise the bilayer/surface integrity, leading to premature drug release or exposure of their mRNA contents to serum proteins. Anti-PEG antibodies also can induce deposition of complement fragments onto the surface of PEGylated lipid-based nanoparticles and induce the release of fluid phase complement activation products. The role of the different complement pathways activated by lipid-based nanoparticles was studied using deficient sera and/or inhibitory antibodies. We identified a major role for the classical complement pathway in the early activation events leading to the activation of C3. Our data also confirm the essential role of amplification of C3 activation by alternative pathway components in the lysis of liposomes. Finally, the levels of pre-existing anti-PEG IgM antibodies in plasma of healthy donors correlated with the degree of complement activation (fixation and lysis) induced upon exposure to PEGylated liposomes and mRNA-LNPs. Taken together, anti-PEG antibodies trigger complement activation by PEGylated lipid-based nanoparticles, which can potentially compromise their integrity, leading to premature drug release or cargo exposure to serum proteins

    Computational Prediction of Intronic microRNA Targets using Host Gene Expression Reveals Novel Regulatory Mechanisms

    Get PDF
    Approximately half of known human miRNAs are located in the introns of protein coding genes. Some of these intronic miRNAs are only expressed when their host gene is and, as such, their steady state expression levels are highly correlated with those of the host gene's mRNA. Recently host gene expression levels have been used to predict the targets of intronic miRNAs by identifying other mRNAs that they have consistent negative correlation with. This is a potentially powerful approach because it allows a large number of expression profiling studies to be used but needs refinement because mRNAs can be targeted by multiple miRNAs and not all intronic miRNAs are co-expressed with their host genes

    HIV-1 Protease Dimer Interface Mutations that Compensate for Viral Reverse Transcriptase Instability in Infectious Virions

    Get PDF
    Article available at http://dx.doi.org/10.1016/j.jmb.2007.06.073Mature enzymes encoded within the human immunodeficiency virus type 1 (HIV-1) genome (protease (PR), reverse transcriptase (RT) and integrase (IN)) derive from proteolytic processing of a large polyprotein (Gag-Pol). Gag-Pol processing is catalyzed by the viral PR, which is active as a homodimer. The HIV-1 RT functions as a heterodimer (p66/p51) composed of subunits of 560 and 440 amino acid residues, respectively. Both subunits have identical amino acid sequence, but p51 lacks 120 residues that are removed by the HIV-1 PR during viral maturation. While p66 is the catalytic subunit, p51 has a primarily structural role. Amino acid substitutions affecting the stability of p66/p51 (i.e. F130W) have a deleterious effect on viral fitness. Previously, we showed that the effects of F130W are mediated by p51 and can be compensated by mutation T58S. While studying the dynamics of emergence of the compensatory mutation, we observed that mutations in the viral PR-coding region were selected in HIV clones containing the RT substitution F130W, before the imposition of T58S/F130W mutations. The PR mutations identified (G94S and T96S) improved the replication capacity of the F130W mutant virus. By using a trans-complementation assay, we demonstrate that the loss of p66/p51 heterodimer stability caused by Trp130 can be attributed to an increased susceptibility of RT to viral PR degradation. Recombinant HIV-1 PRs bearing mutations G94S or T96S showed decreased dimer stability and reduced catalytic efficiency. These results were consistent with crystallographic data showing the location of both residues in the PR dimerization interfaceThis work was supported, in part, by Fondo de Investigación Sanitaria (through the “Red Temática de Investigación Cooperativa en SIDA” RD06/006). In addition, work in the CBMSO (Madrid) was supported by grant BIO2003/01175 (Spanish Ministry of Education and Science) and an institutional grant from the Fundación Ramón Areces. Work in the CNM (Majadahonda) was supported by grants SAF2002/626, SAF2003/4987 and SAF2005/3833 (Spanish Ministry of Education and Science), and by the Plan Nacional sobre el SIDA. Work in the UAB was supported by National Institutes of Health grants CA73470 and AI47714 and core facilities of the Birmingham Center for AIDS Research (P30-AI-27767). Support from the Spanish-Hungarian Intergovernmental Science and Technology Cooperation Program (grant HH2005-0020) is acknowledgedPeer reviewe
    corecore