19 research outputs found

    Zinc-Silver, Zinc-Palladium, and Zinc-Gold as Bimetallic Systems for Carbon Tetrachloride Dechlorination in Water

    Get PDF
    Doping of zinc with silver, palladium, and gold was found to increase reactivity towards carbon tetrachloride in water. Commercial zinc dust, cryochemically prepared zinc metal particles (SMAD nanoparticles), and zinc dust pressed into pellets (mechanically activated zinc) were employed. Reduction products detected were methane, ethylene, acetylene, and other hydrocarbons along with products of partial dechlorination such as chloroform, methylene chloride, and methyl chloride. Dichloroethylenes (DCEs) and long-term reactions traces of trichloroethylene (TCE) were also detected. The use of zinc dust doped with palladium, gold, and silver resulted in 4-10 fold increases in carbon tetrachloride degradation rate and conversion into methane. Up to 30% of carbon tetrachloride was converted into methane by the Zn dust / 2 mol % Ag bimetallic system after the first six hours of reaction. Doping of activated forms of zinc, both cryoparticle and pellets, caused a further increase in methane formation and decrease in the concentration of methylene chloride. The data show that bimetallic enhancement with Pd, Ag, Au, as well as cryo and mechanical activation of zinc, enhances the metal surface reactivity and changes the priority of reaction pathways such that fully reduced products are favored. The “non-catalytic” gold metal was especially effective and this suggests that electron transfer, not catalytic hydrogenation, is rate determining

    The optical identifcation of events with poorly defined locations: The case of the Fermi GBM GRB140801A

    Full text link
    We report the early discovery of the optical afterglow of gamma-ray burst (GRB) 140801A in the 137 deg2^2 3-σ\sigma error-box of the Fermi Gamma-ray Burst Monitor (GBM). MASTER is the only observatory that automatically react to all Fermi alerts. GRB 140801A is one of the few GRBs whose optical counterpart was discovered solely from its GBM localization. The optical afterglow of GRB 140801A was found by MASTER Global Robotic Net 53 sec after receiving the alert, making it the fastest optical detection of a GRB from a GBM error-box. Spectroscopy obtained with the 10.4-m Gran Telescopio Canarias and the 6-m BTA of SAO RAS reveals a redshift of z=1.32z=1.32. We performed optical and near-infrared photometry of GRB 140801A using different telescopes with apertures ranging from 0.4-m to 10.4-m. GRB 140801A is a typical burst in many ways. The rest-frame bolometric isotropic energy release and peak energy of the burst is Eiso=5.540.24+0.26×1052E_\mathrm{iso} = 5.54_{-0.24}^{+0.26} \times 10^{52} erg and Ep,rest280E_\mathrm{p, rest}\simeq280 keV, respectively, which is consistent with the Amati relation. The absence of a jet break in the optical light curve provides a lower limit on the half-opening angle of the jet θ=6.1\theta=6.1 deg. The observed EpeakE_\mathrm{peak} is consistent with the limit derived from the Ghirlanda relation. The joint Fermi GBM and Konus-Wind analysis shows that GRB 140801A could belong to the class of intermediate duration. The rapid detection of the optical counterpart of GRB 140801A is especially important regarding the upcoming experiments with large coordinate error-box areas.Comment: in press MNRAS, 201

    Synthetic Circular RNA Functions as a miR-21 Sponge to Suppress Gastric Carcinoma Cell Proliferation

    No full text
    MicroRNA (miR) sponges containing miR binding sequences constitute a potentially powerful molecular therapeutic strategy. Recently, naturally occurring circular RNAs (circRNAs) were shown to function as efficient miR sponges in cancer cells. We hypothesized that synthetic circRNA sponges could achieve therapeutic loss-of-function targeted against specific miRs. Linear RNA molecules containing miR-21 binding sites were transcribed in vitro; after dephosphorylation and phosphorylation, circularization was achieved using 5′-3′ end-ligation by T4 RNA ligase 1. circRNA stability was assessed using RNase R and fetal bovine serum. Competitive inhibition of miR-21 activity by a synthetic circRNA sponge was assessed using luciferase reporter, cell proliferation, and cell apoptosis assays in three gastric cancer cell lines. circRNA effects on downstream proteins were also delineated by Tandem Mass Tag (TMT) labeling (data available via ProteomeXchange identifier PRIDE: PXD008584), followed by western blotting. We conclude that artificial circRNA sponges resistant to nuclease digestion can be synthesized using simple enzymatic ligation steps. These sponges inhibit cancer cell proliferation and suppress the activity of miR-21 on downstream protein targets, including the cancer protein DAXX. In summary, synthetic circRNA sponges represent a simple, effective, convenient strategy for achieving targeted loss of miR function in vitro, with potential future therapeutic application in human patients. Keywords: synthetic circular RNA, microRNA sponge, microRNA loss-of-function, gastric carcinoma, molecular therap

    Proteolysis by Granzyme B Enhances Presentation of Autoantigenic Peptidylarginine Deiminase 4 Epitopes in Rheumatoid Arthritis

    No full text
    Proteolysis of autoantigens can alter normal MHC class II antigen processing and has been implicated in the induction of autoimmune diseases. Many autoantigens are substrates for the protease granzyme B (GrB), but the mechanistic significance of this association is unknown. Peptidylarginine deiminase 4 (PAD4) is a frequent target of autoantibodies in patients with rheumatoid arthritis (RA) and a substrate for GrB. RA is strongly associated with specific MHC class II alleles, and elevated levels of GrB and PAD4 are found in the joints of RA patients, suggesting that GrB may alter the presentation of PAD4 by RA-associated class II alleles. In this study, complementary proteomic and immunologic approaches were utilized to define the effects of GrB cleavage on the structure, processing, and immunogenicity of PAD4. Hydrogen–deuterium exchange and a cell-free MHC class II antigen processing system revealed that proteolysis of PAD4 by GrB induced discrete structural changes in PAD4 that promoted enhanced presentation of several immunogenic peptides capable of stimulating PAD4-specific CD4+ T cells from patients with RA. This work demonstrates the existence of PAD4-specific T cells in patients with RA and supports a mechanistic role for GrB in enhancing the presentation of autoantigenic CD4+ T cell epitopes
    corecore