35 research outputs found
Neurologic Care of COVID-19 in Children
Most children with SARS-CoV-2 infection have relatively mild clinical symptoms without fever or pneumonia, although severe cases with multiple-organ failure have been reported. Neurological symptoms, which have been mainly reported in adults, are very rare in children. This article will review 2 different aspects of neurological involvement related to this infection in children. In the first part, we will review the neurological abnormalities reported in children caused by this viral infection. Adults frequently report muscle pain, headache, anosmia, dysgeusia, and occasionally more severe central or peripheral nervous system damage. Neurological involvement seems infrequent in children, although some cases have been reported. In the second part, we will discuss the COVID-19 pandemic impact on the healthcare system of some countries, causing collateral damage to general pediatric care and in particular to those children affected with chronic diseases, mainly neurological conditions, including autism, intellectual disability, attention deficit and hyperactivity disorder (ADHD), neuromuscular disorders, cerebral palsy, and epilepsy, and patients needing neurosurgical procedures
Epiploic appendagitis and omental infarction as rare causes of acute abdominal pain in children
Omental infarction and epiploic appendagitis are rare causes of acute abdominal pain in the pediatric population. Radiological evaluation is necessary to establish a specific diagnosis and to differentiate appendicitis from these conditions as they can be often managed conservatively without surgical intervention
Acute Acalculous Cholecystitis Due to a Primary Epstein Barr Virus Infection in a Pediatric Patient
Epstein-Barr virus (EBV) is estimated to infect more than 98% of adults worldwide and is one of the most common human viruses. Acute acalculous cholecystitis (AAC) of the gallbladder is an atypical complication of infectious mononucleosis caused by EBV. Conservative management has been described in the context of AAC caused by EBV. A surgical approach must be considered in the case of acute complications such as perforation or gallbladder gangrene. We present the case of a 10-year-old female patient with AAC due to infectious mononucleosis syndrome caused by primary EBV infection
Two-stage case-control association study of dopamine-related genes and migraine
Background We previously reported risk haplotypes for two genes related with serotonin and dopamine metabolism: MAOA in migraine without aura and DDC in migraine with aura. Herein we investigate the contribution to migraine susceptibility of eight additional genes involved in dopamine neurotransmission. Methods We performed a two-stage case-control association study of 50 tag single nucleotide polymorphisms (SNPs), selected according to genetic coverage parameters. The first analysis consisted of 263 patients and 274 controls and the replication study was composed by 259 cases and 287 controls. All cases were diagnosed according to ICHD-II criteria, were Spanish Caucasian, and were sex-matched with control subjects. Results Single-marker analysis of the first population identified nominal associations of five genes with migraine. After applying a false discovery rate correction of 10%, the differences remained significant only for DRD2 (rs2283265) and TH (rs2070762). Multiple-marker analysis identified a five-marker T-C-G-C-G (rs12363125-rs2283265-rs2242592-rs1554929-rs2234689) risk haplotype in DRD2 and a two-marker A-C (rs6356-rs2070762) risk haplotype in TH that remained significant after correction by permutations. These results, however, were not replicated in the second independent cohort. Conclusion The present study does not support the involvement of the DRD1, DRD2, DRD3, DRD5, DBH, COMT, SLC6A3 and TH genes in the genetic predisposition to migraine in the Spanish population
Case report : De novo pathogenic variant in WFS1 causes Wolfram-like syndrome debuting with congenital bilateral deafness
Background: Congenital deafness could be the first manifestation of a syndrome such as in Usher, Pendred, and Wolfram syndromes. Therefore, a genetic study is crucial in this deficiency to significantly improve its diagnostic efficiency, to predict the prognosis, to select the most adequate treatment required, and to anticipate the development of other associated clinical manifestations. Case presentation: We describe a young girl with bilateral congenital profound deafness, who initially received a single cochlear implant. The genetic study of her DNA using a custom-designed next-generation sequencing (NGS) panel detected a de novo pathogenic heterozygous variant in the WFS1 gene related to Wolfram-like syndrome, which is characterized by the presence of other symptoms such as optic atrophy. Due to this diagnosis, a second implant was placed after the optic atrophy onset. The speech audiometric results obtained with both implants indicate that this work successfully allows the patient to develop normal speech. Deterioration of the auditory nerves has not been observed. Conclusion: The next-generation sequencing technique allows a precise molecular diagnosis of diseases with high genetic heterogeneity, such as hereditary deafness, while this was the only symptom presented by the patient at the time of analysis. The NGS panel, in which genes responsible for both syndromic and non-syndromic hereditary deafness were included, was essential to reach the diagnosis in such a young patient. Early detection of the pathogenic variant in the WFS1 gene allowed us to anticipate the natural evolution of the disease and offer the most appropriate management to the patient
Copper Toxicity Associated With an ATP7A-Related Complex Phenotype
The ATP7A gene encodes a copper transporter whose mutations cause Menkes disease, occipital horn syndrome (OHS), and, less frequently, ATP7A-related distal hereditary motor neuropathy (dHMN). Here we describe a family with OHS caused by a novel mutation in the ATP7A gene, including a patient with a comorbid dHMN that worsened markedly after being treated with copper histidinate.info:eu-repo/semantics/publishedVersio
A Career in Catalysis: Avelino Corma
As one of the most influential scientists in the field of heterogeneous catalysis and materials science, Prof. Avelino Corma has made significant contributions in many diverse fields, spanning over solid catalysts for petrochemistry, solid catalysts for production of fine chemicals, synthesis of microporous and mesoporous materials, development of inorganic-organic hybrid materials, supported metal catalysts (from isolated metal atoms to nanoclusters and nanoparticles) and photochemistry with solid materials. These experimental approaches are complemented with characterization of solid materials with advanced spectroscopy and microscopy techniques as well as theoretical calculations/modeling. The aim of this Account is to overview Avelino's distinguished scientific career and highlight the most remarkable achievements made in his research activities during >40 years. We attempt to show the evolution of Avelino's research topics in his group throughout his career and the approaches that Avelino has chosen to tackle the challenges encountered. The research paradigm developed by Avelino and his team can be inspiring to the researchers in the field of materials science who are striving to translate the knowledge generated in fundamental studies into practical applications for addressing the new scientific challenges encountered in building a sustainable world
Development of a Novel Anti-CD19 Chimeric Antigen Receptor : A Paradigm for an Affordable CAR T Cell Production at Academic Institutions
Genetically modifying autologous T cells to express an anti-CD19 chimeric antigen receptor (CAR) has shown impressive response rates for the treatment of CD19+ B cell malignancies in several clinical trials (CTs). Making this treatment available to our patients prompted us to develop a novel CART19 based on our own anti-CD19 antibody (A3B1), followed by CD8 hinge and transmembrane region, 4-1BB- and CD3z-signaling domains. We show that A3B1 CAR T cells are highly cytotoxic and specific against CD19+ cells in vitro, inducing secretion of pro-inflammatory cytokines and CAR T cell proliferation. In vivo, A3B1 CAR T cells are able to fully control disease progression in an NOD.Cg-Prkdc Il2rd/SzJ (NSG) xenograph B-ALL mouse model. Based on the pre-clinical data, we conclude that our CART19 is clearly functional against CD19+ cells, to a level similar to other CAR19s currently being used in the clinic. Concurrently, we describe the implementation of our CAR T cell production system, using lentiviral vector and CliniMACS Prodigy, within a medium-sized academic institution. The results of the validation phase show our system is robust and reproducible, while maintaining a low cost that is affordable for academic institutions. Our model can serve as a paradigm for similar institutions, and it may help to make CAR T cell treatment available to all patients
Development of a novel anti-CD19 chimeric antigen receptor: A paradigm for an affordable CAR T cell production at academic institutions
Genetically modifying autologous T cells to express an anti-CD19 chimeric antigen receptor (CAR) has shown impressive response rates for the treatment of CD19+ B cell malignancies in several clinical trials (CTs). Making this treatment available to our patients prompted us to develop a novel CART19 based on our own anti-CD19 antibody (A3B1), followed by CD8 hinge and transmembrane region, 4-1BB- and CD3z-signaling domains. We show that A3B1 CAR T cells are highly cytotoxic and specific against CD19+ cells in vitro, inducing secretion of pro-inflammatory cytokines and CAR T cell proliferation. In vivo, A3B1 CAR T cells are able to fully control disease progression in an NOD.Cg-Prkdcscid Il2rdtm1Wjl/SzJ (NSG) xenograph B-ALL mouse model. Based on the pre-clinical data, we conclude that our CART19 is clearly functional against CD19+ cells, to a level similar to other CAR19s currently being used in the clinic. Concurrently, we describe the implementation of our CAR T cell production system, using lentiviral vector and CliniMACS Prodigy, within a medium-sized academic institution. The results of the validation phase show our system is robust and reproducible, while maintaining a low cost that is affordable for academic institutions. Our model can serve as a paradigm for similar institutions, and it may help to make CAR T cell treatment available to all patients
Severe communication delays are independent of seizure burden and persist despite contemporary treatments in SCN1A + Dravet syndrome: Insights from the ENVISION natural history study
Objective: Dravet syndrome (DS) is a developmental and epileptic encephalopathy characterized by high seizure burden, treatment‐resistant epilepsy, and developmental stagnation. Family members rate communication deficits among the most impactful disease manifestations. We evaluated seizure burden and language/communication development in children with DS.
Methods: ENVISION was a prospective, observational study evaluating children with DS associated with SCN1A pathogenic variants (SCN1A+ DS) enrolled at age ≤5 years. Seizure burden and antiseizure medications were assessed every 3 months and communication and language every 6 months with the Bayley Scales of Infant and Toddler Development 3rd edition and the parent‐reported Vineland Adaptive Behavior Scales 3rd edition. We report data from the first year of observation, including analyses stratified by age at Baseline: 0:6–2:0 years:months (Y:M; youngest), 2:1–3:6 Y:M (middle), and 3:7–5:0 Y:M (oldest).
Results: Between December 2020 and March 2023, 58 children with DS enrolled at 16 sites internationally. Median follow‐up was 17.5 months (range = .0–24.0), with 54 of 58 (93.1%) followed for at least 6 months and 51 of 58 (87.9%) for 12 months. Monthly countable seizure frequency (MCSF) increased with age (median [minimum–maximum] = 1.0 in the youngest [1.0–70.0] and middle [1.0–242.0] age groups and 4.5 [.0–2647.0] in the oldest age group), and remained high, despite use of currently approved antiseizure medications. Language/communication delays were observed early, and developmental stagnation occurred after age 2 years with both instruments. In predictive modeling, chronologic age was the only significant covariate of seizure frequency (effect size = .52, p = .024). MCSF, number of antiseizure medications, age at first seizure, and convulsive status epilepticus were not predictors of language/communication raw scores.
Significance: In infants and young children with SCN1A+ DS, language/communication delay and stagnation were independent of seizure burden. Our findings emphasize that the optimal therapeutic window to prevent language/communication delay is before 3 years of age