951 research outputs found

    A Simple Model for Pulse Profiles from Precessing Pulsars, with Special Application to Relativistic Binary PSR B1913+16

    Get PDF
    We study the observable pulse profiles that can be generated from precessing pulsars. A novel coordinate system is defined to aid visualization of the observing geometry. Using this system we explore the different families of profiles that can be generated by simple, circularly symmetric beam shapes. An attempt is then made to fit our model to the observations of relativistic binary PSR B1913+16. It is found that while qualitatively similar pulse profiles can be produced, this minimal model is insufficient for an accurate match to the observational data. Consequently, we confirm that the emission beam of PSR B1913+16 must deviate from circular symmetry, as first reported by Weisberg and Taylor. However, the approximate fits obtained suggest that it may be sufficient to consider only minimal deviations from a circular beam in order to explain the data. We also comment on the applicability of our analysis technique to other precessing pulsars, both binary and isolated.Comment: 35 pages and 8 figures. Published versio

    Microscale Analysis of Spacecraft Heat Shields

    Get PDF
    Imagine entering Earths atmosphere after returning from the outer solar system. A heat shield less than 2 inches thick protects you from temperatures up to 2,900 Celsius (5,252 Fahrenheit). Such conditions were experienced by NASAs Stardust capsule during reentry in 2006. The only materials capable of providing the necessary protection are composites with complex microstructures. Evaluating these materials is difficult, requiring precise knowledge of their properties. To this end, NASA scientists are developing research codes to compute material properties and simulate ablation at the microscale using agency supercomputers. Utilizing these tools, along with experiments, researchers are working to push the limits of spaceflight, allowing for greater flexibility in future space missions

    Tortuosity Computations of Porous Materials using the Direct Simulation Monte Carlo

    Get PDF
    Low-density carbon fiber preforms, used as thermal protection systems (TPS) materials for planetary entry systems, have permeable, highly porous microstructures consisting of interlaced fibers. Internal gas transport in TPS is important in modeling the penetration of hot boundary-layer gases and the in-depth transport of pyrolysis and ablation products. The gas effective diffusion coefficient of a porous material must be known before the gas transport can be modeled in material response solvers; however, there are very little available data for rigid fibrous insulators used in heritage TPS.The tortuosity factor, which reflects the efficiency of the percolation paths, can be computed from the effective diffusion coefficient of a gas inside a porous material and is based on the micro-structure of the material. It is well known, that the tortuosity factor is a strong function of the Knudsen number. Due to the small characteristic scales of porous media used in TPS applications (typical pore size of the order of 50 micron), the transport of gases can occur in the rarefied and transitional regimes, at Knudsen numbers above 1. A proper way to model the gas dynamics at these conditions consists in solving the Boltzmann equation using particle-based methods that account for movement and collisions of atoms and molecules.In this work we adopt, for the first time, the Direct Simulation Monte Carlo (DSMC) method to compute the tortuosity factor of fibrous media in the rarefied regime. To enable realistic simulations of the actual transport of gases in the porous medium, digitized computational grids are obtained from X-ray micro-tomography imaging of real TPS materials. The SPARTA DSMC solver is used for simulations. Effective diffusion coefficients and tortuosity factors are obtained by computing the mean-square displacement of diffusing particles.We first apply the method to compute the tortuosity factors as a function of the Knudsen number for computationally designed materials such as random cylindrical fibers and packed bed of spheres with prescribed porosity. Results are compared to literature values obtained using random walk methods in the rarefied and transitional regime and a finite-volume method for the continuum regime. We then compute tortuosity factors for a real carbon fiber material with a transverse isotropic structure (FiberForm), quantifying differences between through-thickness and in-plain tortuosities at various Knudsen regimes

    REDD sticks and carrots in the Brazilian Amazon: Assessing costs and livelihood implications

    Get PDF

    Significance of DSMC Computed Aerothermal Environments in the Rarefied Regime for Atmospheric Entry Material Response

    Get PDF
    During Mars atmospheric entry, the Mars Science Laboratory (MSL) was protected by a 4.5 meters diameter ablative heatshield assembled in 113 tiles. The heatshield was made of NASA's flagship ablative material, the Phenolic Impregnated Carbon Ablator (PICA). Prior work compared the traditional one-dimensional and three-dimensional material response models at different locations in the heatshield. It was observed that the flow was basically one-dimensional in the nose and flank regions, but three-dimensional flow effects were observed in the outer flank. The objective of this work is to study the effects of the aerothermal environment on the material response. We extend prior work by computing aerothermal environments using the direct simulation Monte Carlo (DSMC) code SPARTA and the CFD code Data Parallel Line Relaxation (DPLR). SPARTA is used to compute environment in the rarefied regime prior to 48.4s of entry where the Knudsen number is such that the Navier-Stokes equations can be inaccurate. Similarly to previous work, the DPLR software is used to compute the hypersonic environment for laminar then turbulent boundary layer assumptions from 48.4 s up to 100 s after Entry Interface (EI) along the MSL 08-TPS-02/01a trajectory. We observe that extending the aerothermal environments to times prior to 48.4 s modifies the thermal response of the heat shield at the surface and in-depth; however the effects on the recession are minimal. Additionally, using the assumption of a turbulent boundary layer versus a laminar one leads to higher surface and in-depth temperatures, larger recession, and a displacement of the peak heating and peak recession location

    Full-Scale MSL Heatshield Material Response Using DSMC and CFD to Compute the Aerothermal Environments

    Get PDF
    During Mars atmospheric entry, the Mars Science Laboratory (MSL) was protected by a 4.5 meters diameter ablative heatshield assembled in 113 tiles [1]. The heatshield was made of NASA's flagship ablative material, the Phenolic Impregnated Carbon Ablator (PICA) [2]. Prior work [3] compared the traditional one-dimensional and three-dimensional material response models at different locations in the heatshield. It was observed that the flow was basically one-dimensional in the nose and flank regions, but three-dimensional flow effects were observed in the outer flank. Additionally, the effects of tiled versus monolithic heatshield models were also investigated. It was observed that the 3D tiled and 3D monolithic configurations yielded relative differences for in-depth material temperature up to 18% and 28%, respectively, when compared to the a 1D model

    De Sitter space and perpetuum mobile

    Full text link
    We give general arguments that any interacting non--conformal {\it classical} field theory in de Sitter space leads to the possibility of constructing a perpetuum mobile. The arguments are based on the observation that massive free falling particles can radiate other massive particles on the classical level as seen by the free falling observer. The intensity of the radiation process is non-zero even for particles with any finite mass, i.e. with a wavelength which is within the causal domain. Hence, we conclude that either de Sitter space can not exist eternally or that one can build a perpetuum mobile.Comment: 11 pages revtex, no figures. Added discussion to strengthen conclusio

    Radiative Heat Transfer Modeling in Fibrous Porous Media

    Get PDF
    Phenolic-Impregnated Carbon Ablator (PICA) was developed at NASA Ames Research Center as a lightweight thermal protection system material for successful atmospheric entries. The objective of the current work is to compute the effective radiative conductivity of fibrous porous media, such as preforms used to make PICA, to enable the efficient design of materials that can meet the thermal performance goals of forthcoming space exploration missions
    • …
    corecore