48 research outputs found

    Future changes and uncertainty in decision-relevant measures of East African climate

    Get PDF
    The need for the development of adaptation strategies for climate change in Africa is becoming critical. For example, infrastructure with a long lifespan now needs to be designed or adapted to account for a future climate that will be different from the past or present. There is a growing necessity for the climate information used in decision making to change from traditional science-driven metrics to decision-driven metrics. This is particularly relevant in East Africa, where limited adaptation and socio-economic capacity make this region acutely vulnerable to climate change. Here, we employ an interdisciplinary consultation process to define and analyse a number of such decision-oriented metrics. These metrics take a holistic approach, addressing the key East African sectors of agriculture, water supply, fisheries, flood management, urban infrastructure and urban health. A multifaceted analysis of multimodel climate projections then provides a repository of user-focused information on climate change and its uncertainties, for all metrics and seasons and two future time horizons. The spatial character and large intermodel uncertainty of changes in temperature and rainfall metrics are described, as well as those of other relevant metrics such as evaporation and solar radiation. Intermodel relationships amongst metrics are also explored, with two clear clusters forming around rainfall and temperature metrics. This latter analysis determines the extent to which model weights could, or could not, be applied across multiple climate metrics. Further work must now focus on maximising the utility of model projections, and developing tailored risk-based communication strategies

    The UKC2 regional coupled environmental prediction system

    Get PDF
    It is hypothesized that more accurate prediction and warning of natural hazards, such as of the impacts of severe weather mediated through various components of the environment, require a more integrated Earth System approach to forecasting. This hypothesis can be explored using regional coupled prediction systems, in which the known interactions and feedbacks between different physical and biogeochemical components of the environment across sky, sea and land can be simulated. Such systems are becoming increasingly common research tools. This paper describes the development of the UKC2 regional coupled research system, which has been delivered under the UK Environmental Prediction Prototype project. This provides the first implementation of an atmosphere–land–ocean–wave modelling system focussed on the United Kingdom and surrounding seas at km-scale resolution. The UKC2 coupled system incorporates models of the atmosphere (Met Office Unified Model), land surface with river routing (JULES), shelf-sea ocean (NEMO) and ocean waves (WAVEWATCH III). These components are coupled, via OASIS3-MCT libraries, at unprecedentedly high resolution across the UK within a north-western European regional domain. A research framework has been established to explore the representation of feedback processes in coupled and uncoupled modes, providing a new research tool for UK environmental science. This paper documents the technical design and implementation of UKC2, along with the associated evaluation framework. An analysis of new results comparing the output of the coupled UKC2 system with relevant forced control simulations for six contrasting case studies of 5-day duration is presented. Results demonstrate that performance can be achieved with the UKC2 system that is at least comparable to its component control simulations. For some cases, improvements in air temperature, sea surface temperature, wind speed, significant wave height and mean wave period highlight the potential benefits of coupling between environmental model components. Results also illustrate that the coupling itself is not sufficient to address all known model issues. Priorities for future development of the UK Environmental Prediction framework and component systems are discussed

    The performance of FLake in the Met Office Unified Model

    Get PDF
    We present results from the coupling of FLake to the Met Office Unified Model (MetUM). The coupling and initialisation are first described, and the results of testing the coupled model in local and global model configurations are presented. These show that FLake has a small statistical impact on screen temperature, but has the potential to modify the weather in the vicinity of areas of significant inland water. Examination of FLake lake ice has revealed that the behaviour of lakes in the coupled model is unrealistic in some areas of significant sub-grid orography. Tests of various modifications to ameliorate this behaviour are presented. The results indicate which of the possible model changes best improve the annual cycle of lake ice. As FLake has been developed and tuned entirely outside the Unified Model system, these results can be interpreted as a useful objective measure of the performance of the Unified Model in terms of its near-surface characteristics
    corecore