11 research outputs found

    Strong-field induced fragmentation and isomerization of toluene probed by ultrafast femtosecond electron diffraction and mass spectrometry

    No full text
    We investigate the fragmentation and isomerization of toluene molecules induced by strong-field ionization with a femtosecond near-infrared laser pulse. Momentum-resolved coincidence time-of-flight ion mass spectrometry is used to determine the relative yield of different ionic products and fragmentation channels as a function of laser intensity. Ultrafast electron diffraction is used to capture the structure of the ions formed on a picosecond time scale by comparing the diffraction signal with theoretical predictions. Through the combination of the two measurements and theory, we are able to determine the main fragmentation channels and to distinguish between ions with identical mass but different structures. In addition, our diffraction measurements show that the independent atom model, which is widely used to analyze electron diffraction patterns, is not a good approximation for diffraction from ions. We show that the diffraction data is in very good agreement with ab initio scattering calculations

    Hydrogen migration in inner-shell ionized halogenated cyclic hydrocarbons

    No full text
    Abstract We have studied the fragmentation of the brominated cyclic hydrocarbons bromocyclo-propane, bromocyclo-butane, and bromocyclo-pentane upon Br(3d) and C(1s) inner-shell ionization using coincidence ion momentum imaging. We observe a substantial yield of CH3+ fragments, whose formation requires intramolecular hydrogen (or proton) migration, that increases with molecular size, which contrasts with prior observations of hydrogen migration in linear hydrocarbon molecules. Furthermore, by inspecting the fragment ion momentum correlations of three-body fragmentation channels, we conclude that CHxâș fragments (with x = 0, 
, 3) with an increasing number of hydrogens are more likely to be produced via sequential fragmentation pathways. Overall trends in the molecular-size-dependence of the experimentally observed kinetic energy releases and fragment kinetic energies are explained with the help of classical Coulomb explosion simulations

    Time-resolved site-selective imaging of predissociation and charge transfer dynamics: the CH3_3I B-band

    No full text
    The predissociation dynamics of the 6s (B2^2E) Rydberg state of gas-phase CH3_3I were investigated by time-resolved Coulomb-explosion imaging using extreme ultraviolet (XUV) free-electron laser pulses. Inner-shell ionization at the iodine 4d edge was utilized to provide a site-specific probe of the ensuing dynamics. The combination of a velocity-map imaging (VMI) spectrometer coupled with the pixel imaging mass spectrometry (PImMS) camera permitted three-dimensional ionic fragment momenta to be recorded simultaneously for a wide range of iodine charge states. In accord with previous studies, initial excitation at 201.2 nm results in internal conversion and subsequent dissociation on the lower-lying A-state surface on a picosecond time scale. Examination of the time-dependent yield of low kinetic energy iodine fragments yields mechanistic insights into the predissociation and subsequent charge transfer following multiple ionization of the iodine products. The effect of charge transfer was observed through differing delay-dependencies of the various iodine charge states, from which critical internuclear distances for charge transfer could be inferred and compared to a classical over-the-barrier model. Time-dependent photofragment angular anisotropy parameters were extracted from the central slice of the Newton sphere, without Abel inversion, and highlight the effect of rotation of the parent molecule before dissociation, as observed in previous works. Our results demonstrate the ability to perform three-dimensional ion imaging at high event rates and showcase the potential benefits of this approach, particularly in relation to further time-resolved studies at free-electron laser facilities

    Time-resolved site-selective imaging of predissociation and charge transfer dynamics : The CH3I B-band

    Get PDF
    The predissociation dynamics of the 6s (B2E) Rydberg state of gas-phase CH3I were investigated by time-resolved Coulomb-explosion imaging using extreme ultraviolet (XUV) free-electron laser pulses. Inner-shell ionization at the iodine 4d edge was utilized to provide a site-specific probe of the ensuing dynamics. The combination of a velocity-map imaging (VMI) spectrometer coupled with the pixel imaging mass spectrometry (PImMS) camera permitted three-dimensional ionic fragment momenta to be recorded simultaneously for a wide range of iodine charge states. In accord with previous studies, initial excitation at 201.2 nm results in internal conversion and subsequent dissociation on the lower-lying A-state surface on a picosecond time scale. Examination of the time-dependent yield of low kinetic energy iodine fragments yields mechanistic insights into the predissociation and subsequent charge transfer following multiple ionization of the iodine products. The effect of charge transfer was observed through differing delay-dependencies of the various iodine charge states, from which critical internuclear distances for charge transfer could be inferred and compared to a classical over-the-barrier model. Time-dependent photofragment angular anisotropy parameters were extracted from the central slice of the Newton sphere, without Abel inversion, and highlight the effect of rotation of the parent molecule before dissociation, as observed in previou

    Characterizing the multi-dimensional reaction dynamics of dihalomethanes using XUV-induced Coulomb explosion imaging

    No full text
    Site-selective probing of iodine 4d orbitals at 13.1 nm was used to characterize the photolysis of CH2_2I2_2 and CH2_2BrI initiated at 202.5 nm. Time-dependent fragment ion momenta were recorded using Coulomb explosion imaging mass spectrometry and used to determine the structural dynamics of the dissociating molecules. Correlations between these fragment momenta, as well as the onset times of electron transfer reactions between them, indicate that each molecule can undergo neutral three-body photolysis. For CH2_2I2_2, the structural evolution of the neutral molecule was simultaneously characterized along the C–I and I–C–I coordinates, demonstrating the sensitivity of these measurements to nuclear motion along multiple degrees of freedom

    Valence shell electronically excited states of norbornadiene and quadricyclane

    No full text
    The absolute photoabsorption cross sections of norbornadiene (NBD) and quadricyclane (QC), two isomers with chemical formula C7H8 that are attracting much interest for solar energy storage applications, have been measured from threshold up to 10.8 eV using the Fourier transform spectrometer at the SOLEIL synchrotron radiation facility. The absorption spectrum of NBD exhibits some sharp structure associated with transitions into Rydberg states, superimposed on several broad bands attributable to valence excitations. Sharp structure, although less pronounced, also appears in the absorption spectrum of QC. Assignments have been proposed for some of the absorption bands using calculated vertical transition energies and oscillator strengths for the electronically excited states of NBD and QC. Natural transition orbitals indicate that some of the electronically excited states in NBD have a mixed Rydberg/valence character, whereas the first ten excited singlet states in QC are all predominantly Rydberg in the vertical region. In NBD, a comparison between the vibrational structure observed in the experimental 11B1–11A1 (3sa1 ← 5b1) band and that predicted by Franck–Condon and Herzberg–Teller modeling has necessitated a revision of the band origin and of the vibrational assignments proposed previously. Similar comparisons have encouraged a revision of the adiabatic first ionization energy of NBD. Simulations of the vibrational structure due to excitation from the 5b2 orbital in QC into 3p and 3d Rydberg states have allowed tentative assignments to be proposed for the complex structure observed in the absorption bands between ∌5.4 and 7.0 eV

    Monitoring the evolution of relative product populations at early times during a photochemical reaction

    No full text
    Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps toward understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species among the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offer a powerful route to determining time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5H)-thiophenone. This strategy provides experimental validation of the predicted high (∌50%) yield of an episulfide isomer containing a strained three-membered ring within ∌1 ps of photoexcitation and highlights the rapidity of interconversion between the rival highly vibrationally excited photoproducts in their ground electronic state
    corecore