634 research outputs found

    Why TcT_c of (CaFeAs)10_{10}Pt3.58_{3.58}As8_8 is twice as high as (CaFe0.95_{0.95}Pt0.05_{0.05}As)10_{10}Pt3_3As8_8

    Full text link
    Recently discovered (CaFe1x_{1-x}Ptx_xAs)10_{10}Pt3_3As8_8 and (CaFeAs)10_{10}Pt4y_{4-y}As8_8 superconductors are very similar materials having the same elemental composition and structurally similar superconducting FeAs slabs. Yet the maximal critical temperature achieved by changing Pt concentration is approximately twice higher in the latter. Using angle-resolved photoemission spectroscopy(ARPES) we compare the electronic structure of their optimally doped compounds and find drastic differences. Our results highlight the sensitivity of critical temperature to the details of fermiology and point to the decisive role of band-edge singularities in the mechanism of high-TcT_c superconductivity

    ARPES on HTSC: simplicity vs. complexity

    Full text link
    A notable role in understanding of microscopic electronic properties of high temperature superconductors (HTSC) belongs to angle resolved photoemission spectroscopy (ARPES). This technique supplies a direct window into reciprocal space of solids: the momentum-energy space where quasiparticles (the electrons dressed in clouds of interactions) dwell. Any interaction in the electronic system, e.g. superconducting pairing, leads to modification of the quasi-particle spectrum--to redistribution of the spectral weight over the momentum-energy space probed by ARPES. A continued development of the technique had an effect that the picture seen through the ARPES window became clearer and sharper until the complexity of the electronic band structure of the cuprates had been resolved. Now, in an optimal for superconductivity doping range, the cuprates much resemble a normal metal with well predicted electronic structure, though with rather strong electron-electron interaction. This principal disentanglement of the complex physics from complex structure reduced the mystery of HTSC to a tangible problem of interaction responsible for quasi-particle formation. Here we present a short overview of resent ARPES results, which, we believe, denote a way to resolve the HTSC puzzle.Comment: A review written for a special issue of FN

    TaIrTe4 a ternary Type-II Weyl semi-metal

    Full text link
    In metallic condensed matter systems two different types of Weyl fermions can in principle emerge, with either a vanishing (type-I) or with a finite (type-II) density of states at the Weyl node energy. So far only WTe2 and MoTe2 were predicted to be type-II Weyl semi-metals. Here we identify TaIrTe4 as a third member of this family of topological semi-metals. TaIrTe4 has the attractive feature that it hosts only four well-separated Weyl points, the minimum imposed by symmetry. Moreover, the resulting topological surface states - Fermi arcs connecting Weyl nodes of opposite chirality - extend to about 1/3 of the surface Brillouin zone. This large momentum-space separation is very favorable for detecting the Fermi arcs spectroscopically and in transport experiments

    Anomalously enhanced photoemission from the Dirac point and symmetry of the self-energy variations for the surface states in Bi2Se3

    Full text link
    Accurate analysis of the photoemission intensity from the surface states of Bi2Se3 reveals two unusual features: spectral line asymmetry and anomalously enhanced photoemission from the Dirac point. The former indicates a certain symmetry of a scattering process, which results in strongly k\omega-dependent contribution to the imaginary part of the self-energy that changes sign while crossing both the dispersion curves and the energy of the Dirac point. The latter is hard to describe by one particle spectral function while a final state interference seems to be plausible explanation

    A description of a system of programs for mathematically processing on unified series (YeS) computers photographic images of the Earth taken from spacecraft

    Get PDF
    A description of a batch of programs for the YeS-1040 computer combined into an automated system for processing photo (and video) images of the Earth's surface, taken from spacecraft, is presented. Individual programs with the detailed discussion of the algorithmic and programmatic facilities needed by the user are presented. The basic principles for assembling the system, and the control programs are included. The exchange format within whose framework the cataloging of any programs recommended for the system of processing will be activated in the future is displayed

    High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides

    Full text link
    In the family of the iron-based superconductors, the REREFeAsO-type compounds (with RERE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (TcT_{\mathrm{c}}) up to 55 K55\ \textrm{K} and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92_{0.92}Co0.08_{0.08}AsO (Tc=18 KT_{\mathrm{c}}=18\ \textrm{K}) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REREFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record TcT_{\mathrm{c}}. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6_{0.6}F0.4_{0.4} compound with a twice higher Tc=38 KT_{\mathrm{c}}=38\ \textrm{K}. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ\Delta below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.Comment: Open access article available online at http://www.nature.com/articles/srep1827

    Interaction-induced singular Fermi surface in a high-temperature oxypnictide superconductor

    Get PDF
    In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature Tc=55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overlap (nesting), believed to enhance the pairing interaction and thus superconductivity. The prevalence of such large circular features in the Fermi surface has since been associated with many other iron-based compounds and has grown to be generally accepted in the field. In this work we show that a prototypical compound of the 1111-type, SmFe0.92Co0.08AsO, is at odds with this description and possesses a distinctly different Fermi surface, which consists of two singular constructs formed by the edges of several bands, pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. Such singularities dramatically affect the low-energy electronic properties of the material, including superconductivity. We further argue that occurrence of these singularities correlates with the maximum superconducting transition temperature attainable in each material class over the entire family of iron-based superconductors.Comment: Open access article available online at http://www.nature.com/srep/2015/150521/srep10392/full/srep10392.htm
    corecore