57 research outputs found
Bridging fundamental RNA biology, retroviral replication, and oncogenesis: Karen Beemon wins the 2007 Retrovirology Prize
The 2007 M. Jeang Retrovirology Prize has been awarded to Dr. Karen L. Beemo
Tat RNA silencing suppressor activity contributes to perturbation of lymphocyte miRNA by HIV-1
<p>Abstract</p> <p>Background</p> <p>MicroRNA (miRNA)-mediated RNA silencing is integral to virtually every cellular process including cell cycle progression and response to virus infection. The interplay between RNA silencing and HIV-1 is multifaceted, and accumulating evidence posits a strike-counterstrike interface that alters the cellular environment to favor virus replication. For instance, miRNA-mediated RNA silencing of HIV-1 translation is antagonized by HIV-1 Tat RNA silencing suppressor activity. The activity of HIV-1 accessory proteins Vpr/Vif delays cell cycle progression, which is a process prominently modulated by miRNA. The expression profile of cellular miRNA is altered by HIV-1 infection in both cultured cells and clinical samples. The open question stands of what, if any, is the contribution of Tat RNA silencing suppressor activity or Vpr/Vif activity to the perturbation of cellular miRNA by HIV-1.</p> <p>Results</p> <p>Herein, we compared the perturbation of miRNA expression profiles of lymphocytes infected with HIV-1<sup>NL4-3 </sup>or derivative strains that are deficient in Tat RNA silencing suppressor activity (Tat K51A substitution) or ablated of the vpr/vif open reading frames. Microarrays recapitulated the perturbation of the cellular miRNA profile by HIV-1 infection. The miRNA expression trends overlapped ~50% with published microarray results on clinical samples from HIV-1 infected patients. Moreover, the number of miRNA perturbed by HIV-1 was largely similar despite ablation of Tat RSS activity and Vpr/Vif; however, the Tat RSS mutation lessened HIV-1 downregulation of twenty-two miRNAs.</p> <p>Conclusions</p> <p>Our study identified miRNA expression changes attributable to Tat RSS activity in HIV-1<sup>NL4-3</sup>. The results accomplish a necessary step in the process to understand the interface of HIV-1 with host RNA silencing activity. The overlap in miRNA expression trends observed between HIV-1 infected CEMx174 lymphocytes and primary cells supports the utility of cultured lymphocytes as a tractable model to investigate interplay between HIV-1 and host RNA silencing. The subset of miRNA determined to be perturbed by Tat RSS in HIV-1 infection provides a focal point to define the gene networks that shape the cellular environment for HIV-1 replication.</p
Coordinate enhancement of transgene transcription and translation in a lentiviral vector
BACKGROUND: Coordinate enhancement of transgene transcription and translation would be a potent approach to significantly improve protein output in a broad array of viral vectors and nonviral expression systems. Many vector transgenes are complementary DNA (cDNA). The lack of splicing can significantly reduce the efficiency of their translation. Some retroviruses contain a 5' terminal post-transcriptional control element (PCE) that facilitates translation of unspliced mRNA. Here we evaluated the potential for spleen necrosis virus PCE to stimulate protein production from HIV-1 based lentiviral vector by: 1) improving translation of the internal transgene transcript; and 2) functionally synergizing with a transcriptional enhancer to achieve coordinate increases in RNA synthesis and translation. RESULTS: Derivatives of HIV-1 SIN self-inactivating lentiviral vector were created that contain PCE and cytomegalovirus immediate early enhancer (CMV IE). Results from transfected cells and four different transduced cell types indicate that: 1) PCE enhanced transgene protein synthesis; 2) transcription from the internal promoter is enhanced by CMV IE; 3) PCE and CMV IE functioned synergistically to significantly increase transgene protein yield; 4) the magnitude of translation enhancement by PCE was similar in transfected and transduced cells; 5) differences were observed in steady state level of PCE vector RNA in transfected and transduced cells; 6) the lower steady state was not attributable to reduced RNA stability, but to lower cytoplasmic accumulation in transduced cells. CONCLUSION: PCE is a useful tool to improve post-transcriptional expression of lentiviral vector transgene. Coordinate enhancement of transcription and translation is conferred by the combination of PCE with CMV IE transcriptional enhancer and increased protein yield up to 11 to 17-fold in transfected cells. The incorporation of the vector provirus into chromatin correlated with reduced cytoplasmic accumulation of PCE transgene RNA. We speculate that epigenetic modulation of promoter activity altered cotranscriptional recruitment of RNA processing factors and reduced the availability of fully processed transcript or the efficiency of export from the nucleus. Our results provide an example of the dynamic interplay between the transcription and post-transcription steps of gene expression and document that introduction of heterologous gene expression signals can yield disparate effects in transfected versus transduced cells
Tertiary Structural and Functional Analyses of a Viroid RNA Motif by Isostericity Matrix and Mutagenesis Reveal its Essential Role in Replication
RNA-templated RNA replication is essential for viral or viroid infection, as well as for regulation of cellular gene expression. Specific RNA motifs likely regulate various aspects of this replication. Viroids of the Pospiviroidae family, as represented by the Potato spindle tuber viroid (PSTVd), replicate in the nucleus by utilizing DNA-dependent RNA polymerase II. We investigated the role of the loop E (sarcin/ricin) motif of the PSTVd genomic RNA in replication. A tertiary-structural model of this motif, inferred by comparative sequence analysis and comparison with nuclear magnetic resonance and X-ray crystal structures of loop E motifs in other RNAs, is presented in which core non-Watson-Crick base pairs are precisely specified. Isostericity matrix analysis of these base pairs showed that the model accounts for the reported natural sequence variations and viable experimental mutations in loop E motifs of PSTVd and other viroids. Furthermore, isostericity matrix analysis allowed us to design disruptive, as well as compensatory, mutations of PSTVd loop E. Functional analyses of such mutants by in vitro and in vivo experiments demonstrated that loop E structural integrity is crucial for replication, specifically during transcription. Our results suggest that the PSTVd loop E motif exists and functions in vivo and provide loss-of-function genetic evidence for the essential role of a viroid RNA three-dimensional motif in rolling-circle replication. The use of isostericity matrix analysis of non-Watson-Crick base pairing to rationalize mutagenesis of tertiary motifs and systematic in vitro and in vivo functional assays of mutants offers a novel, comprehensive approach to elucidate the tertiary-structure-function relationships for RNA motifs of general biological significance. Copyright © 2006, American Society for Microbiology. All Rights Reserved
Human T lymphotropic virus type-1 p30(II )alters cellular gene expression to selectively enhance signaling pathways that activate T lymphocytes
BACKGROUND: Human T-lymphotropic virus type-1 (HTLV-1) is a deltaretrovirus that causes adult T-cell leukemia/lymphoma and is implicated in a variety of lymphocyte-mediated disorders. HTLV-1 contains both regulatory and accessory genes in four pX open reading frames. pX ORF-II encodes two proteins, p13(II )and p30(II), which are incompletely defined in the virus life cycle or HTLV-1 pathogenesis. Proviral clones of the virus with pX ORF-II mutations diminish the ability of the virus to maintain viral loads in vivo. Exogenous expression of p30(II )differentially modulates CREB and Tax-responsive element-mediated transcription through its interaction with CREB-binding protein/p300 and represses tax/rex RNA nuclear export. RESULTS: Herein, we further characterized the role of p30(II )in regulation of cellular gene expression, using stable p30(II )expression system employing lentiviral vectors to test cellular gene expression with Affymetrix U133A arrays, representing ~33,000 human genes. Reporter assays in Jurkat T cells and RT-PCR in Jurkat and primary CD4+ T-lymphocytes were used to confirm selected gene expression patterns. Our data reveals alterations of interrelated pathways of cell proliferation, T-cell signaling, apoptosis and cell cycle in p30(II )expressing Jurkat T cells. In all categories, p30(II )appeared to be an overall repressor of cellular gene expression, while selectively increasing the expression of certain key regulatory genes. CONCLUSIONS: We are the first to demonstrate that p30(II), while repressing the expression of many genes, selectively activates key gene pathways involved in T-cell signaling/activation. Collectively, our data suggests that this complex retrovirus, associated with lymphoproliferative diseases, relies upon accessory gene products to modify cellular environment to promote clonal expansion of the virus genome and thus maintain proviral loads in vivo
RNA helicase A interacts with divergent lymphotropic retroviruses and promotes translation of human T-cell leukemia virus type 1
The 5′ untranslated region (UTR) of retroviruses contain structured replication motifs that impose barriers to efficient ribosome scanning. Two RNA structural motifs that facilitate efficient translation initiation despite a complex 5′ UTR are internal ribosome entry site (IRES) and 5′ proximal post-transcriptional control element (PCE). Here, stringent RNA and protein analyses determined the 5′ UTR of spleen necrosis virus (SNV), reticuloendotheliosis virus A (REV-A) and human T-cell leukemia virus type 1 (HTLV-1) exhibit PCE activity, but not IRES activity. Assessment of SNV translation initiation in the natural context of the provirus determined that SNV is reliant on a cap-dependent initiation mechanism. Experiments with siRNAs identified that REV-A and HTLV-1 PCE modulate post-transcriptional gene expression through interaction with host RNA helicase A (RHA). Analysis of hybrid SNV/HTLV-1 proviruses determined SNV PCE facilitates Rex/Rex responsive element-independent Gag production and interaction with RHA is necessary. Ribosomal profile analyses determined that RHA is necessary for polysome association of HTLV-1 gag and provide direct evidence that RHA is necessary for efficient HTLV-1 replication. We conclude that PCE/RHA is an important translation regulatory axis of multiple lymphotropic retroviruses. We speculate divergent retroviruses have evolved a convergent RNA–protein interaction to modulate translation of their highly structured mRNA
Editorial: 10 years of Frontiers in genetics: past discoveries, current challenges and future perspectives
3 páginasThis research was supported by the National Institute on Health,grant number R01AG059586, R01AG059586-03S1, and by the University of Connecticut (UConn) Claude D. Pepper Older Americans Independence Center (P30-AG067988). BR is a recipient of a Glenn Award for Research in Biological Mechanisms of Aging. Research in the MR lab is supported by the Canadian Institutes of Health Research (CIHR) Project Grant
202203PJG-482520-CIA-CDAA-111824, CIHR Project Grant
202209PJT-486512-CIA-CDAA-111824, University of Manitoba
Collaborative Research Program, Ontario Rett Syndrome
Association Hope Fund, Children Hospital Research Institute of
Manitoba (CHRIM), and Natural Sciences and Engineering
Research Council of Canada (NSERC) Discovery Grant RGPIN2016-06035. Work at JP-T’s lab was supported by CIBER-Consorcio Centro de Investigación Biomédica en Red-(209), Instituto de Salud
Carlos III, Ministerio de Ciencia e Innovación.Peer reviewe
RNA helicase A modulates translation of HIV-1 and infectivity of progeny virions
Retroviruses rely on host RNA-binding proteins to modulate various steps in their replication. Previously several animal retroviruses were determined to mediate Dhx9/RNA helicase A (RHA) interaction with a 5′ terminal post-transcriptional control element (PCE) for efficient translation. Herein PCE reporter assays determined HTLV-1 and HIV-1 RU5 confer orientation-dependent PCE activity. The effect of Dhx9/RHA down-regulation and rescue with siRNA-resistant RHA on expression of HIV-1NL4–3 provirus determined that RHA is necessary for efficient HIV-1 RNA translation and requires ATPase-dependent helicase function. Quantitative analysis determined HIV-1 RNA steady-state and cytoplasmic accumulation were not reduced; rather the translational activity of viral RNA was reduced. Western blotting determined that RHA-deficient virions assemble with Lys-tRNA synthetase, exhibit processed reverse transcriptase and contain similar level of viral RNA, but they are poorly infectious on primary lymphocytes and HeLa cells. The results demonstrate RHA is an important host factor within the virus-producer cell and within the viral particle. The identification of RHA-dependent PCE activity in cellular junD RNA and in six of seven genera of Retroviridae suggests conservation of this translational control mechanism among vertebrates, and convergent evolution of Retroviridae to utilize this host mechanism
Thriving under Stress: Selective Translation of HIV-1 Structural Protein mRNA during Vpr-Mediated Impairment of eIF4E Translation Activity
Translation is a regulated process and is pivotal to proper cell growth and homeostasis. All retroviruses rely on the host translational machinery for viral protein synthesis and thus may be susceptible to its perturbation in response to stress, co-infection, and/or cell cycle arrest. HIV-1 infection arrests the cell cycle in the G2/M phase, potentially disrupting the regulation of host cell translation. In this study, we present evidence that HIV-1 infection downregulates translation in lymphocytes, attributable to the cell cycle arrest induced by the HIV-1 accessory protein Vpr. The molecular basis of the translation suppression is reduced accumulation of the active form of the translation initiation factor 4E (eIF4E). However, synthesis of viral structural proteins is sustained despite the general suppression of protein production. HIV-1 mRNA translation is sustained due to the distinct composition of the HIV-1 ribonucleoprotein complexes. RNA-coimmunoprecipitation assays determined that the HIV-1 unspliced and singly spliced transcripts are predominantly associated with nuclear cap binding protein 80 (CBP80) in contrast to completely-spliced viral and cellular mRNAs that are associated with eIF4E. The active translation of the nuclear cap binding complex (CBC)-bound viral mRNAs is demonstrated by ribosomal RNA profile analyses. Thus, our findings have uncovered that the maintenance of CBC association is a novel mechanism used by HIV-1 to bypass downregulation of eIF4E activity and sustain viral protein synthesis. We speculate that a subset of CBP80-bound cellular mRNAs contribute to recovery from significant cellular stress, including human retrovirus infection
- …