429 research outputs found

    La déficience intellectuelle (du diagnostic en puces ADN à l'identification de gènes candidats)

    Get PDF
    L'analyse chromosomique sur puce ADN (ACPA) tend à devenir le principal examen diagnostique dans la déficience intellectuelle (DI). Parmi les techniques d'ACPA, les puces SNP ont l'intérêt de pouvoir détecter les pertes d'hétérozygotie, et par conséquent d identifier les isodisomies uniparentales (iUPD) et les zones d'identité liées à la consanguinité. Nous avons étudié une cohorte de 1 187 patients atteints de DI, dans un cadre diagnostique, sur puces SNP. Nous avons réalisé, par cette étude, 145 diagnostics (12%) dont 2 iUPD et 6 délétions n'incluant qu'un seul gène. De plus, nous avons détecté 639 CNV rares non décrits chez des sujets contrôles et incluant des séquences codantes, ce qui nous a permis d'identifier 11 gènes candidats dans la DI : CAMTA1, SP3, CNTNAP4, NUDT12, STXBP6, DOCK8, DOCK10, SMARCA2, NYAP2, ATAD3A et ATAD3B. Nous avons tenté de valider l'implication de ces gènes par séquençage, mais n'avons trouvé de seconde mutation pour aucun d'entre eux. Toutefois, des réarrangements de CAMTA1 ont été retrouvés dans 2 autres familles avec un phénotype homogène (DI et ataxie congénitale) ce qui nous a permis d affirmer qu'il s'agit d'un gène de DI. Par ailleurs, l'homozygosity mapping, réalisé avec puces SNP, a identifié, par séquençage whole exome, une mutation non-sens homozygote du gène BUD13 dans une famille de DI syndromique. Enfin, de façon fortuite, nous avons caractérisé en ACPA une translocation familiale entraînant une disruption d'un gène d'ataxie spino-cérébelleuse, ATXN10, ce qui a permis de mieux comprendre la physiopathologie de cette maladie. Au total, notre étude démontre l'intérêt des puces SNP dans la DI, d'une part en diagnostic et d'autre part pour l'identification de nouveaux gènes responsables de DI.Chromosomal Microarray Analysis (CMA) has become the main diagnostic test in the field of intellectual disability (ID). Among CMA techniques, SNP arrays have the advantage of identifying losses of heterozygosity in addition to Copy Number Variants (CNVs). Therefore they can detect uniparental isodisomies (iUPD) and regions of identity by descent. We screened a cohort of 1,187 patients with ID, in diagnostic setting, by CMA using SNP arrays. Causal abnormalities, including 2 iUPDs and 6 deletions comprising only one gene, were detected in 145 patients (12%). Moreover we found 639 rare CNVs, absent from control individuals, which included coding sequences. Our results allowed us to identify 11 genes possibly involved in or contributing to ID: CAMTA1, SP3, CNTNAP4, NUDT12, STXBP6, DOCK8, DOCK10, SMARCA2, NYAP2, ATAD3A and ATAD3B. We then screened additional patients with similar phenotypes in order to find a second mutation, but no second mutation was identified in any of them. Besides, CAMTA1 rearrangements were also found among two other families with homogeneous phenotypes (ID and congenital ataxia), which confirms that this gene is involved in ID. Furthermore, thanks to homozygosity mapping made possible by SNP arrays combined with exome sequencing, we identified a homozygous nonsense mutation in the BUD13 gene, in a family with syndromic ID. Finally we incidentally characterized a familial translocation resulting in the disruption of ATXN10, a gene responsible for spinocerebellar ataxia. This translocation has helped to better understand the pathophysiology of the disease. Overall, our study shows the importance of SNP arrays for the molecular diagnosis of ID and as a tool to identify genes responsible for ID.PARIS5-Bibliotheque electronique (751069902) / SudocSudocFranceF

    Protean proteases: At the cutting edge of lung diseases

    Get PDF
    Proteases were traditionally viewed as mere protein-degrading enzymes with a very restricted spectrum of substrates. A major expansion in protease research has uncovered a variety of novel substrates, and it is now evident that proteases are critical pleiotropic actors orchestrating pathophysiological processes. Recent findings evidenced that the net proteolytic activity also relies upon interconnections between different protease and protease inhibitor families in the protease web.In this review, we provide an overview of these novel concepts with a particular focus on pulmonary pathophysiology. We describe the emerging roles of several protease families including cysteine and serine proteases.The complexity of the protease web is exemplified in the light of multidimensional regulation of serine protease activity by matrix metalloproteases through cognate serine protease inhibitor processing. Finally, we will highlight how deregulated protease activity during pulmonary pathogenesis may be exploited for diagnosis/prognosis purposes, and utilised as a therapeutic tool using nanotechnologies.Considering proteases as part of an integrative biology perspective may pave the way for the development of new therapeutic targets to treat pulmonary diseases related to intrinsic protease deregulation

    Variant recurrence confirms the existence of a FBXO31-related spastic-dystonic cerebral palsy syndrome

    Get PDF
    The role of genetics in the causation of cerebral palsy has become the focus of many studies aiming to unravel the heterogeneous etiology behind this frequent neurodevelopmental disorder. A recent paper reported two unrelated children with a clinical diagnosis of cerebral palsy, who carried the same de novo c.1000G \u3e A (p.Asp334Asn) variant in FBXO31, encoding a widely studied tumor suppressor not previously implicated in monogenic disease. We now identified a third individual with the recurrent FBXO31 de novo missense variant, featuring a spastic-dystonic phenotype. Our data confirm a link between variant FBXO31 and an autosomal dominant neurodevelopmental disorder characterized by prominent motor dysfunction

    Cannabis oil extracts for chronic pain: What else can be learned from another structured prospective cohort?

    Get PDF
    INTRODUCTION: The use of medicinal cannabis for managing pain expands, although its efficacy and safety have not been fully established through randomized controlled trials. OBJECTIVES: This structured, prospective questionnaire-based cohort was aimed to assess long-term effectiveness and safety of cannabis oil extracts in patients with chronic pain. METHODS: Adult Israeli patients licensed to use cannabis oil extracts for chronic pain were followed prospectively for 6 months. The primary outcome measure was change from baseline in average weekly pain intensity, and secondary outcomes were changes in related symptoms and quality of life, recorded before treatment initiation and 1, 3, and 6 months thereafter. Generalized linear mixed model was used to analyze changes over time. In addition, responders (≥30% reduction in weekly pain at any time point) were identified. RESULTS: The study included 218 patients at baseline, and 188, 154, and 131 at 1, 3, and 6 months, respectively. At 6 months, the mean daily doses of cannabidiol and Δ9-tetrahydrocannabinol were 22.4 ± 24.0 mg and 20.8 ± 30.1 mg, respectively. Pain decreased from 7.9 ± 1.7 at baseline to 6.6 ± 2.2 at 6 months ( CONCLUSION: This prospective cohort demonstrated a modest overall long-term improvement in chronic pain and related symptoms and a reasonable safety profile with the use of relatively low doses of individually titrated Δ9-tetrahydrocannabinol and cannabidiol

    Heterozygous De Novo UBTF Gain-of-Function Variant Is Associated with Neurodegeneration in Childhood.

    Get PDF
    Ribosomal RNA (rRNA) is transcribed from rDNA by RNA polymerase I (Pol I) to produce the 45S precursor of the 28S, 5.8S, and 18S rRNA components of the ribosome. Two transcription factors have been defined for Pol I in mammals, the selectivity factor SL1, and the upstream binding transcription factor (UBF), which interacts with the upstream control element to facilitate the assembly of the transcription initiation complex including SL1 and Pol I. In seven unrelated affected individuals, all suffering from developmental regression starting at 2.5-7 years, we identified a heterozygous variant, c.628G\u3eA in UBTF, encoding p.Glu210Lys in UBF, which occurred de novo in all cases. While the levels of UBF, Ser388 phosphorylated UBF, and other Pol I-related components (POLR1E, TAF1A, and TAF1C) remained unchanged in cells of an affected individual, the variant conferred gain of function to UBF, manifesting by markedly increased UBF binding to the rDNA promoter and to the 5\u27- external transcribed spacer. This was associated with significantly increased 18S expression, and enlarged nucleoli which were reduced in number per cell. The data link neurodegeneration in childhood with altered rDNA chromatin status and rRNA metabolism

    A YWHAZ Variant Associated With Cardiofaciocutaneous Syndrome Activates the RAF-ERK Pathway

    Get PDF
    Cardiofaciocutaneous (CFC) syndrome is a genetic disorder characterized by distinctive facial features, congenital heart defects, and skin abnormalities. Several germline gain-of-function mutations in the RAS/RAF/MEK/ERK pathway are associated with the disease, including KRAS, BRAF, MEK1, and MEK2. CFC syndrome thus belongs to a group of disorders known as RASopathies, which are all caused by pathogenic mutations in various genes encoding components of the RAS pathway. We recently identified novel variants in YWHAZ, a 14-3-3 family member, in individuals with a phenotype consistent with CFC that may potentially be deleterious and disease-causing. In the current study, we take advantage of the vertebrate model Xenopus laevis to analyze the functional consequence of a particular YWHAZ variant, S230W, and investigate the molecular mechanisms underlying its activity. We show that compared with wild type YWHAZ, the S230W variant induces severe embryonic defects when ectopically expressed in early Xenopus embryos. The S230W variant also rescues the defects induced by a dominant negative FGF receptor more efficiently and enhances Raf-stimulated Erk phosphorylation to a higher level than wild type YWHAZ. Although neither YWHAZ nor the variant promotes membrane recruitment of Raf proteins, the variant binds to more Raf and escapes phosphorylation by casein kinase 1a. Our data provide strong support to the hypothesis that the S230W variant of YWHAZ is a gain-of-function mutation in the RAS-ERK pathway and may underlie a CFC phenotype

    Sporadic Infantile Epileptic Encephalopathy Caused by Mutations in PCDH19 Resembles Dravet Syndrome but Mainly Affects Females

    Get PDF
    Dravet syndrome (DS) is a genetically determined epileptic encephalopathy mainly caused by de novo mutations in the SCN1A gene. Since 2003, we have performed molecular analyses in a large series of patients with DS, 27% of whom were negative for mutations or rearrangements in SCN1A. In order to identify new genes responsible for the disorder in the SCN1A-negative patients, 41 probands were screened for micro-rearrangements with Illumina high-density SNP microarrays. A hemizygous deletion on chromosome Xq22.1, encompassing the PCDH19 gene, was found in one male patient. To confirm that PCDH19 is responsible for a Dravet-like syndrome, we sequenced its coding region in 73 additional SCN1A-negative patients. Nine different point mutations (four missense and five truncating mutations) were identified in 11 unrelated female patients. In addition, we demonstrated that the fibroblasts of our male patient were mosaic for the PCDH19 deletion. Patients with PCDH19 and SCN1A mutations had very similar clinical features including the association of early febrile and afebrile seizures, seizures occurring in clusters, developmental and language delays, behavioural disturbances, and cognitive regression. There were, however, slight but constant differences in the evolution of the patients, including fewer polymorphic seizures (in particular rare myoclonic jerks and atypical absences) in those with PCDH19 mutations. These results suggest that PCDH19 plays a major role in epileptic encephalopathies, with a clinical spectrum overlapping that of DS. This disorder mainly affects females. The identification of an affected mosaic male strongly supports the hypothesis that cellular interference is the pathogenic mechanism
    corecore