458 research outputs found

    An engineering insight into the relationship of selective cytoskeletal impairment and biomechanics of HeLa cells

    Get PDF
    It is widely accepted that the pathological state of cells is characterized by a modification of mechanical properties, affecting cellular shape and viscoelasticity as well as adhesion behaviour and motility. Thus, assessing these parameters could represent an interesting tool to monitor disease development and progression, but also the effects of drug treatments. Since biomechanical properties of cells are strongly related to cytoskeletal architecture, in this work we extensively studied the effects of selective impairments of actin microfilaments and microtubules on HeLa cells through force-deformation curves and stress relaxation tests with atomic force microscopy. Confocal microscopy was also used to display the effects of the used drugs on the cytoskeletal structure. In synergy with the aforementioned methods, stress relaxation data were used to assess the storage and loss moduli, as a complementary way to describe the influence of cytoskeletal components on cellular viscoelasticity. Our results indicate that F-actin and microtubules play a complementary role in the cell stiffness and viscoelasticity, and both are fundamental for the adhesion properties. Our data support also the application of biomechanics as a tool to study diseases and their treatments

    Microbial assisted phytodepuration for water reclamation: Environmental benefits and threats

    Get PDF
    Climate changes push for water reuse as a priority to counteract water scarcity and minimize water footprint especially in agriculture, one of the highest water consuming human activities. Phytodepuration is indicated as a promising technology for water reclamation, also in the light of its economic and ecological sustainability, and the use of specific bacterial inocula for microbial assisted phytodepuration has been proposed as a further advance for its implementation. Here we provided an overview on the selection and use of plant growth promoting bacteria in Constructed Wetland (CW) systems, showing their advantages in terms of plant growth support and pollutant degradation abilities. Moreover, CWs are also proposed for the removal of emerging organic pollutants like antibiotics from urban wastewaters. We focused on this issue, still debated in the literature, revealing the necessity to deepen the knowledge on the antibiotic resistance spread into the environment in relation to treated wastewater release and reuse. In addition, given the presence in the plant system of microhabitats (e.g. rhizosphere) that are hot spot for Horizontal Gene Transfer, we highlighted the importance of gene exchange to understand if these events can promote the diffusion of antibiotic resistance genes and antibiotic resistant bacteria, possibly entering in the food production chain when treated wastewater is used for irrigation. Ideally, this new knowledge will lead to improve the design of phytodepuration systems to maximize the quality and safety of the treated effluents in compliance with the 'One Health' concept

    Basic magnetic properties of magnetoactive elastomers of mixed content

    Get PDF
    The results of theoretical and experimental investigations of the polymer composites that belong to a class of magnetoactive elastomers with mixed magnetic content (MAEs-MC) are presented. The fundamental distinction of such composites from ordinary magnetoactive elastomers is that the magnetic filler of MAEs-MC comprises both magnetically soft (MS) particles of size 3–5 ”m and magnetically hard (MH) particles whose size is an order of magnitude greater. Since MH particles of the magnetic filler are mixed into a composition in a non-magnetised state, this can ensure preparation of samples with fairly homogeneous distribution of the filler. The 'initiation' process of a synthesised MAE-MC is done by its magnetisation in a strong magnetic field that imparts to the sample unique magnetic and mechanical properties. In this work, it is shown that the presence of MS particles around larger MH particles, firstly, causes an augmentation of magnetic moments, which the MH particles acquire during initiation, and secondly, enhances the magnetic susceptibility and remanent magnetisation of MAEs-MC. These magnetic parameters are evaluated on the basis of the macroscopic magnetostatics from the experimental data of spatial scanning of the field over the space around MAEs-MC made in the shape of a spheroid. A set of samples with a fixed MH and varying MS volume contents that are initiated in two different fields, is used. The developed mesoscopic model of magnetic interactions between the MH and MS phases is able to explain the experimentally observed dependencies of the magnetic parameters on the concentration of the MS phase. The problem is solved numerically under the assumption that the elastic matrix of MAEs-MC is rigid, i.e. the mutual displacements of the particles are negligible. The model helps to elucidate the interaction of the magnetic phases and to establish that the MS phase plays thereby a dual role. On the one hand, the MS phase screens out the field acting inside MH particles, and on the other hand, it forms mesoscopic magnetic bridges between adjoining MH particles, which in turn enhance their field. The combined interplay of these contributions defines the resulting material properties of MAEs-MC on the macroscopic scale

    Elastomer with magneto- and electrorheological properties

    Get PDF
    In this study we introduce an elastic composite, which has been manufactured using a fine carbonyl iron powder coated with a polymeric dielectric shell and dispersed in a silicone elastomer in a way as it is typically done manufacturing magnetorheological elastomers. Due to the used filler such a material possesses the capability of exhibiting magneto- and electrorheological effects. Our experiments have shown that the application of the magnetic field to the composite results in the magnetorheological effect, which becomes stronger in the case of the additional application of an electric field

    Root Bacteria Recruited by Phragmites australis in Constructed Wetlands Have the Potential to Enhance Azo-Dye Phytodepuration

    Get PDF
    The microbiome associated with plants used in phytodepuration systems can boost plant growth and services, especially in ecosystems dealing with recalcitrant compounds, hardly removed via traditional wastewater (WW) treatments, such as azo-dyes used in textile industry. In this context, we aimed to study the cultivable microbiome selected by Phragmites australis plants in a Constructed Wetland (CW) in Morocco, in order to obtain candidate inoculants for the phytodepuration of azo-dye contaminated WW. A collection of 152 rhizospheric and endophytic bacteria was established. The strains were phylogenetically identified and characterized for traits of interest in the phytodepuration context. All strains showed Plant Growth Promotion potential in vitro and 67% of them significantly improved the growth of a model plant in vivo compared to the non bacterized control plants. Moreover, most of the isolates were able to grow in presence of several model micropollutants typically found in WW, indicating their potential use in phytodepuration of a wide spectrum of effluents. The six most promising strains of the collection were tested in CW microcosms alone or as consortium: the consortium and two single inocula demonstrated to significantly increase the removal of the model azo-dye Reactive Black 5 compared to the non bacterized controls

    Edge Disorder in Bottom-Up Zigzag Graphene Nanoribbons: Implications for Magnetism and Quantum Electronic Transport

    Full text link
    We unveil the nature of the structural disorder in bottom-up zigzag graphene nanoribbons along with its effect on the magnetism and electronic transport on the basis of scanning probe microscopies and first-principles calculations. We find that edge-missing m-xylene units emerging during the cyclodehydrogenation step of the on-surface synthesis are the most common point defects. These "bite'' defects act as spin-1 paramagnetic centers, severely disrupt the conductance spectrum around the band extrema, and give rise to spin-polarized charge transport. We further show that the electronic conductance across graphene nanoribbons is more sensitive to "bite" defects forming at the zigzag edges than at the armchair ones. Our work establishes a comprehensive understanding of the low-energy electronic properties of disordered bottom-up graphene nanoribbons

    Quantum Electronic Transport Across "Bite" Defects in Graphene Nanoribbons

    Full text link
    On-surface synthesis has recently emerged as an effective route towards the atomically precise fabrication of graphene nanoribbons of controlled topologies and widths. However, whether and to which degree structural disorder occurs in the resulting samples is a crucial issue for prospective applications that remains to be explored. Here, we experimentally identify missing benzene rings at the edges, which we name "bite" defects, as the most abundant type of disorder in armchair nanoribbons synthesized by the bottom-up approach. First, we address their density and spatial distribution on the basis of scanning tunnelling microscopy and find that they exhibit a strong tendency to aggregate. Next, we explore their effect on the quantum charge transport from first-principles calculations, revealing that such imperfections substantially disrupt the conduction properties at the band edges. Finally, we generalize our theoretical findings to wider nanoribbons in a systematic manner, hence establishing practical guidelines to minimize the detrimental role of such defects on the charge transport. Overall, our work portrays a detailed picture of "bite" defects in bottom-up armchair graphene nanoribbons and assesses their effect on the performance of carbon-based nanoelectronic devices

    Using olive mill wastewate to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell

    Get PDF
    Improving electricity generation from wastewater (DW) by using olive mill wastewater (OMW) was evaluated using single-chamber microbial fuel cells (MFC). Doing so single-chambers air cathode MFCs with platinum anode were fed with domestic wastewater (DW) alone and mixed with OMW at the ratio of 14:1 (w/w). MFCs fed with DW + OMW gave 0.38 V at 1 kO, while power density from polarization curve was of 124.6mW m 2. The process allowed a total reduction of TCOD and BOD5 of 60% and 69%, respectively, recovering the 29% of the coulombic efficiency. The maximum voltage obtained from MFC fed with DW + OMW was 2.9 times higher than that of cell fed with DW. DNA-fingerprinting showed high bacterial diversity for both experiments and the presence on anodes of exoelectrogenic bacteria, such as Geobacter spp. Electrodes selected peculiar consortia and, in particular, anodes of both experiments showed a similar specialization of microbial communities independently by feeding used
    • 

    corecore